Publication Cover
Cognitive Neuroscience
Current Debates, Research & Reports
Volume 8, 2017 - Issue 1
1,001
Views
29
CrossRef citations to date
0
Altmetric
Articles

A TMS study on the contribution of visual area V5 to the perception of implied motion in art and its appreciation

, , &
Pages 59-68 | Received 24 Jun 2015, Published online: 16 Dec 2015

References

  • Alford, J. L., van Donkelaar, P., Dassonville, P., & Marrocco, R. T. (2007). Transcranial magnetic stimulation over MT/MST fails to impair judgments of implied motion. Cognitive, Affective and Behavioural Neuroscience, 7, 225–232. doi:10.3758/CABN.7.3.225
  • Antal, A., Kincses, T. Z., Nitsche, M. A., & Paulus, W. (2003). Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia, 41, 1802–1807. doi:10.1016/S0028-3932(03)00181-7
  • Beckers, G., & Homberg, V. (1992). Cerebral visual motion blindness: Transitory akinetopsia induced by transcranial magnetic stimulation of human area V5. Proceedings of the Royal Society London B: Biological Sciences, 249, 173–178. doi:10.1098/rspb.1992.0100
  • Beckers, G., & Zeki, S. (1995). The consequences of inactivating areas V1 and V5 on visual motion perception. Brain, 118, 49–60. doi:10.1093/brain/118.1.49
  • Boccioni, U., Carrà, C. D., Russolo, L., Balla, G., & Severini, G. (1910). Futurist painting: Technical manifesto. In H. B. Chipp (Ed.), Theories of modern art. A source book by artists and critics (1968) (pp. 289–293). Berkeley, CA: University of California Press.
  • Bona, S., Cattaneo, Z., & Silvanto, J. (2015). The causal role of the occipital face area (OFA) and lateral occipital (LO) cortex in symmetry perception. Journal of Neuroscience, 35(2), 731–738. doi:10.1523/JNEUROSCI.3733-14.2015
  • Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area MT. Annual Review of Neuroscience, 28, 157–189. doi:10.1146/annurev.neuro.26.041002.131052
  • Brieber, D., Leder, H., & Nadal, M. (2015). The experience of art in museums: An attempt to dissociate the role of physical context and genuineness. Empirical Studies of the Arts, 33, 95–105. doi:10.1177/0276237415570000
  • Brieber, D., Nadal, M., Leder, H., & Rosenberg, R. (2014). Art in time and space: Context modulates the relation between art experience and viewing time. Plos One, 9(6), e99019. doi:10.1371/journal.pone.0099019
  • Calvo-Merino, B., Jola, C., Glaser, D. E., & Haggard, P. (2008). Towards a sensorimotor aesthetics of performing art. Consciousness and Cognition, 17, 911–922. doi:10.1016/j.concog.2007.11.003
  • Calvo-Merino, B., Urgesi, C., Orgs, G., Aglioti, S. M., & Haggard, P. (2010). Extrastriate body area underlies aesthetic evaluation of body stimuli. Experimental Brain Research, 204, 447–456. doi:10.1007/s00221-010-2283-6
  • Campana, G., Cowey, A., & Walsh, V. (2006). Visual area V5/MT remembers “what” but not “where”. Cerebral Cortex, 16, 1766–1770.
  • Campana, G., Maniglia, M., & Pavan, A. (2013). Common (and multiple) neural substrates for static and dynamic motion after-effects: A rTMS investigation. Cortex, 49, 2590–2594.
  • Campana, G., Pavan, A., Maniglia, M., & Casco, C. (2011). The fastest (and simplest), the earliest: The locus of processing of rapid forms of motion aftereffect. Neuropsychologia, 49, 2929–2934.
  • Cattaneo, Z., Lega, C., Ferrari, C., Vecchi, T., Cela-Conde, C. J., Silvanto, J., & Nadal, M. (2015). The role of the lateral occipital cortex in aesthetic appreciation of representational and abstract paintings: A TMS study. Brain and Cognition, 95, 44–53. doi:10.1016/j.bandc.2015.01.008
  • Cattaneo, Z., Lega, C., Flexas, A., Nadal, M., Munar, E., & Cela-Conde, C. J. (2014). The world can look better: Enhancing beauty experience with brain stimulation. Social Cognitive and Affective Neuroscience, 9, 1713–1721. doi:10.1093/scan/nst165
  • Cattaneo, Z., Lega, C., Gardelli, C., Merabet, L. B., Cela-Conde, C., & Nadal, M. (2014). The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: A TMS study. Neuroimage, 99, 443–450. doi:10.1016/j.neuroimage.2014.05.037
  • Cattaneo, Z., Mattavelli, G., Papagno, C., Herbert, A. M., & Silvanto, J. (2011). The role of the human extrastriate visual cortex in mirror symmetry discrimination: A TMS adaptation study. Brain & Cognition, 77(1), 120–127. doi:10.1016/j.bandc.2011.04.007
  • Cattaneo, Z., & Silvanto, J. (2008). Investigating visual motion perception using the TMS-adaptation paradigm. Neuroreport, 19, 1423–1427. doi:10.1097/WNR.0b013e32830e0025
  • Cazzato, V., Mele, S., & Urgesi, C. (2014). Gender differences in the neural underpinning of perceiving and appreciating the beauty of the body. Behavioural Brain Research, 264, 188–196. doi:10.1016/j.bbr.2014.02.001
  • Cela-Conde, C. J., Ayala, F. J., Munar, E., Maestú, F., Nadal, M., Capó, M. A., … Marty, G. (2009). Sex-related similarities and differences in the neural correlates of beauty. Proceedings of the National Academy of Sciences, USA, 106, 3847–3852. doi:10.1073/pnas.0900304106
  • Cela-Conde, C. J., Marty, G., Maestú, F., Ortiz, T., Munar, E., Fernández, A., … Quesney, F. (2004). Activation of the prefrontal cortex in the human visual aesthetic perception. Proceedings of the National Academy of Sciences USA, 101, 6321–6325. doi:10.1073/pnas.0401427101
  • Chatterjee, A. (2011). Neuroaesthetics: A coming of age story. Journal of Cognitive Neuroscience, 23, 53–62. doi:10.1162/jocn.2010.21457
  • Chatterjee, A. (2014). The aesthetic brain. How we evolved to desire beauty and enjoy art. New York, NY: Oxford University Press.
  • Chatterjee, A., & Vartanian, O. (2014). Neuroaesthetics. Trends in Cognitive Sciences, 18, 370–375. doi:10.1016/j.tics.2014.03.003
  • Cohn, N., & Maher, S. (2015). The notion of motion: The neurocognition of motion lines in visual narratives. Brain Research, 1601, 73–84. doi:10.1016/j.brainres.2015.01.018
  • Cross, E. S., Kirsch, L., Ticini, L. F., & Schütz-Bosbach, S. (2011). The impact of aesthetic evaluation and physical ability on dance perception. Frontiers in Human Neurosciences, 5, 102.
  • Cupchik, G. C., & Gebotys, R. J. (1988). The search for meaning in art: Interpretive styles and judgments of quality. Visual Arts Research, 14, 38–58.
  • Cupchik, G. C., Vartanian, O., Crawley, A., & Mikulis, D. J. (2009). Viewing artworks: Contributions of cognitive control and perceptual facilitation to aesthetic experience. Brain and Cognition, 70, 84–91. doi:10.1016/j.bandc.2009.01.003
  • Cutting, J. E. (2002). Representing motion in a static image: Constraints and parallels in art, science, and popular culture. Perception, 31, 1165–1193. doi:10.1068/p3318
  • De Tommaso, M., Sardaro, M., & Livrea, P. (2008). Aesthetic value of paintings affects pain thresholds. Consciousness and Cognition, 17, 1152–1162. doi:10.1016/j.concog.2008.07.002
  • Ellison, A., Battelli, L., Walsh, V., & Cowey, A. (2003). The effect of expectation on facilitation of colour/form conjunction tasks by TMS over area V5. Neuropsychologia, 41, 1794–1801. doi:10.1016/S0028-3932(03)00180-5
  • Fawcett, I. P., Hillerbrand, A., & Singh, K. D. (2007). The temporal sequence of evoked and induced cortical responses to implied-motion processing in human motion area V5/MT+. European Journal of Neuroscience, 26, 775–783. doi:10.1111/j.1460-9568.2007.05707.x
  • Freedberg, D., & Gallese, V. (2007). Motion, emotion and empathy in esthetic experience. Trends in Cognitive Sciences, 11(5), 197–203. doi:10.1016/j.tics.2007.02.003
  • Gombrich, E. H. (1964). Moment and movement in art. Journal of the Warburg and Courtauld Institutes, 27, 293–306. doi:10.2307/750521
  • Grossman, E. D., Battelli, L., & Pascual-Leone, A. (2005). Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 45, 2847–2853. doi:10.1016/j.visres.2005.05.027
  • Ishizu, T., & Zeki, S. (2011). Toward a brain-based theory of beauty. PlosOne, 6(7), e21852. doi:10.1371/journal.pone.0021852
  • Ishizu, T., & Zeki, S. (2013). The brain’s specialized systems for aesthetic and perceptual judgment. European Journal of Neuroscience, 37(9), 1413–1420. doi:10.1111/ejn.2013.37.issue-9
  • Jacobsen, T., & Höfel, L. (2003). Descriptive and evaluative judgment processes: Behavioral and electrophysiological indices of processing symmetry and aesthetics. Cognitive, Affective & Behavioral Neuroscience, 3, 289–299. doi:10.3758/CABN.3.4.289
  • Kim, C.-Y., & Blake, R. (2007). Brain activity accompanying perception of implied motion in abstract paintings. Spatial Vision, 20, 545–560. doi:10.1163/156856807782758395
  • Koelsch, S., Fritz, T., von Cramon, D. Y., Müller, K., & Friederici, A. D. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27, 239–250. doi:10.1002/hbm.20180
  • Koivisto, M., Mäntylä, T., & Silvanto, J. (2010). The role of early visual cortex (V1/V2) in conscious and unconscious visual perception. NeuroImage, 51, 828–834. doi:10.1016/j.neuroimage.2010.02.042
  • Kourtzi, Z., & Kanwisher, N. (2000). Activation in human MT/MST by static images with implied motion. Journal of Cognitive Neuroscience, 12, 48–55. doi:10.1162/08989290051137594
  • Krekelberg, B., Vatakis, A., & Kourtzi, Z. (2005). Implied motion from form in the human visual cortex. Journal of Neurophysiology, 94, 4373–4386. doi:10.1152/jn.00690.2005
  • Lacey, S., Hagtvedt, H., Patrick, V. M., Anderson, A., Silla, R., Deshpande, G., … Sathian, K. (2011). Art for reward’s sake: Visual art recruits the ventral striatum. Neuroimage, 55, 420–433. doi:10.1016/j.neuroimage.2010.11.027
  • Lorteije, J. A. M., Kenemans, J. L., Jellema, T., van der Lubbe, R. H. J., de Heer, F., & van Wezel, R. J. A. (2006). Delayed response to animate implied motion in human motion processing areas. Journal of Cognitive Neuroscience, 18, 158–168. doi:10.1162/jocn.2006.18.2.158
  • Martinetti, F. T. (1908). The foundation and manifesto of Futurism. In H. B. Chipp (Ed.), Theories of modern art. A source book by artists and critics (1968) (pp. 284–289). Berkeley, LA: University of California Press.
  • Massaro, D., Savazzi, F., Di Dio, C., Freedberg, D., Gallese, V., Gilli, G., & Marchetti, A. (2012). When art moves the eyes: A behavioral and eye-tracking study. Plos One, 7, e37285. doi:10.1371/journal.pone.0037285
  • Muggleton, N. G., Juan, C. H., Cowey, A., & Walsh, V. (2003). Human frontal eye fields and visual search. Journal of Neurophysiology, 89, 3340–3343. doi:10.1152/jn.01086.2002
  • Nadal, M. (2013). The experience of art: Insights from neuroimaging. Progress in Brain Research, 204, 135–158.
  • Nadal, M., & Pearce, M. T. (2011). The Copenhagen Neuroaesthetics conference: Prospects and pitfalls for an emerging field. Brain and Cognition, 76, 172–183. doi:10.1016/j.bandc.2011.01.009
  • Nodine, C. F., Locher, P. J., & Krupinski, E. A. (1993). The role of formal art training on perception and aesthetic judgment of art compositions. Leonardo, 26, 219–227. doi:10.2307/1575815
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 1, 97–113. doi:10.1016/0028-3932(71)90067-4
  • Pavan, A., Cuturi, F. L., Maniglia, M., Casco, C., & Campana, G. (2011). Implied motion from static photographs influences the perceived position of stationary objects. Vision Research, 51, 187–194. doi:10.1016/j.visres.2010.11.004
  • Pihko, E., Virtanen, A., Saarinen, V. M., Pannasch, S., Hirvenkari, L., Tossavainen, T., … Hari, R. (2011). Experiencing art: The influence of expertise and painting abstraction level. Frontiers in Human Neuroscience, 5, 94. doi:10.3389/fnhum.2011.00094
  • Pitcher, D., Walsh, V., Yovel, G., & Duchaine, B. (2007). TMS evidence for the involvement of the right occipital face area in early face processing. Current Biology, 17, 1568–1573. doi:10.1016/j.cub.2007.07.063
  • Proverbio, A. M., Riva, F., & Zani, A. (2009). Observation of static pictures of dynamic actions enhances the activity of movement-related brain areas. PloS ONE, 4, e5389. doi:10.1371/journal.pone.0005389
  • Rosenberg, H. (1952). The American action painters. Art News, 51/8, 22–23, 48-50.
  • Ross, J., Badcock, D. R., & Hayes, A. (2000). Coherent global motion in the absence of coherent velocity signals. Current Biology, 10, 679–682. doi:10.1016/S0960-9822(00)00524-8
  • Rossi, S., Hallett, M., Rossini, P. M., & Pascual-Leone, A. (2011). Screening questionnaire before TMS: An update. Clinical Neurophysiology, 122(8), 1686. doi:10.1016/j.clinph.2010.12.037
  • Sbriscia-Fioretti, B., Berchio, C., Freedberg, D., Gallese, V., & Umiltà, M. A. (2013). ERP modulation during observation of abstract paintings by Franz Kline. PLoS One, 8, e75241. doi:10.1371/journal.pone.0075241
  • Senior, C., Ward, J., & David, A. (2002). Representational momentum and the brain: An investigation of the functional necessity of V5/MT. Visual Cognition, 9, 81–92. doi:10.1080/13506280143000331
  • Silvanto, J., & Cattaneo, Z. (2010). Transcranial magnetic stimulation reveals the content of visual short-term memory in the visual cortex. Neuroimage, 50(4), 1683–1689. doi:10.1016/j.neuroimage.2010.01.021
  • Silvanto, J., Lavie, N., & Walsh, V. (2005). Double dissociation of V1 and V5/MT activity in visual awareness. Cerebral Cortex, 15, 1736–1741. doi:10.1093/cercor/bhi050
  • Stewart, L., Battelli, L., Walsh, V., & Cowey, A. (1999). Motion perception and perceptual learning studied by magnetic stimulation. Electroencephalography and Clinical Neurophysiology, Suppl 51, 334–350.
  • Thakral, P. P., Moo, L. R., & Slotnick, S. D. (2012). A neural mechanism for aesthetic experience. NeuroReport, 23, 310–313. doi:10.1097/WNR.0b013e328351759f
  • Ticini, L. F., Rachman, L., Pelletier, J., & Dubal, S. (2014). Enhancing aesthetic appreciation by priming canvases with actions that match the artist’s painting style. Frontiers in Human Neuroscience, 8, 391. doi:10.3389/fnhum.2014.00391
  • Urgesi, C., Moro, V., Candidi, M., & Aglioti, S. M. (2006). Mapping implied body actions in the human motor system. The Journal of Neuroscience, 26, 7942–7949. doi:10.1523/JNEUROSCI.1289-06.2006
  • Valentine, C. W. (1962). The experimental psychology of beauty. London: Methuen & Co.
  • Vartanian, O., & Goel, V. (2004). Neuroanatomical correlates of aesthetic preference for paintings. Neuroreport, 15, 893–897. doi:10.1097/00001756-200404090-00032
  • Wang, X., Huang, Y., Ma, Q., & Li, N. (2012). Event-related potential P2 correlates of implicit aesthetic experience. Neuroreport, 23, 862–866. doi:10.1097/WNR.0b013e3283587161
  • Winston, A. S., & Cupchik, G. C. (1992). The evaluation of high art and popular art by naive and experienced viewers. Visual Arts Research, 18, 1–14.
  • Zeki, S. (2015). Area V5—A microcosm of the visual brain. Frontiers in Integrative Neuroscience, 9, 21. doi:10.3389/fnint.2015.00021
  • Zeki, S., & Stutters, J. (2012). A brain-derived metric for preferred kinetic stimuli. Open Biology, 2, 120001. doi:10.1098/rsob.120001
  • Zeki, S., Watson, J. D., Lueck, C. J., Friston, K. J., Kennard, C., & Frackowiak, R. S. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11(3), 641–649.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.