Publication Cover
Cognitive Neuroscience
Current Debates, Research & Reports
Volume 10, 2019 - Issue 3
575
Views
12
CrossRef citations to date
0
Altmetric
Articles

The influence of working memory performance on event-related potentials in young and older adults

, &
Pages 117-128 | Received 03 Oct 2018, Published online: 06 Feb 2019

References

  • Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20–29.
  • Ashford, J. W., Coburn, K. L., Rose, T. L., & Bayley, P. J. (2011). P300 energy loss in aging and Alzheimer’s disease. Journal of Alzheimer’s Disease, 26(s3), 229–238.
  • Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1–29.
  • Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502–509.
  • Cabeza, R., Daselaar, S. M., Dolcos, F., Prince, S. E., Budde, M., & Nyberg, L. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex, 14(4), 364–375.
  • Constantinidis, C., & Klingberg, T. (2016). The neuroscience of working memory capacity and training. Nature Reviews Neuroscience, 17(7), 438.
  • Cowan, N., & Alloway, T. P. (2008). The development of working memory. In N. Cowan (Ed.), Development of memory in childhood (2nd ed ed., pp. 303–342). Hove, UK: Psychology Press.
  • Daffner, K. R., Chong, H., Sun, X., Tarbi, E. C., Riis, J. L., McGinnis, S. M., & Holcomb, P. J. (2011). Mechanisms underlying age-and performance-related differences in working memory. Journal of Cognitive Neuroscience, 23(6), 1298–1314.
  • Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2007). Que pasa? the posterior–anterior shift in aging. Cerebral Cortex, 18(5), 1201–1209. 10.1093/cercor/bhm155.
  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.
  • Dong, S., Reder, L. M., Yao, Y., Liu, Y., & Chen, F. (2015). Individual differences in working memory capacity are reflected in different erp and eeg patterns to task difficulty. Brain Research, 1616, 146–156. 10.1016/j.brainres.2015.05.003.
  • Duarte, A., Ranganath, C., Trujillo, C., & Knight, R. T. (2006). Intact recollection memory in high-performing older adults: ERP and behavioral evidence. Journal of Cognitive Neuroscience, 18(1), 33–47. doi: 10.1162/089892906775249988.
  • Finnigan, S., O’Connell, R. G., Cummins, T. D., Broughton, M., & Robertson, I. H. (2011). ERP measures indicate both attention and working memory encoding decrements in aging. Psychophysiology, 48(5), 601–611.
  • Fitzgerald, P. G., & Picton, T. W. (1983). Event-related potentials recorded during the discrimination of improbable stimuli. Biological Psychology, 17(4), 241–276.
  • Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45(1), 152–170.
  • Freunberger, R., Klimesch, W., Doppelmayr, M., & Höller, Y. (2007). Visual p2 component is related to theta phase-locking. Neuroscience Letters, 426(3), 181–186. doi: 10.1016/j.neulet.2007.08.062.
  • Gajewski, P. D., & Falkenstein, M. (2014). Age-related effects on ERP and oscillatory EEG-dynamics in a 2-back task. Journal of Psychophysiology. doi:10.1027/0269-8803/a000123
  • Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24(2), 95–112.
  • Gutchess, A. H., Welsh, R. C., Hedden, T., Bangert, A., Minear, M., Liu, L. L., & Park, D. C. (2005). Aging and the neural correlates of successful picture encoding: Frontal activations compensate for decreased medial-temporal activity. Journal of Cognitive Neuroscience, 17(1), 84–96. doi: 10.1162/0898929052880048.
  • Huang, C. M., Polk, T. A., Goh, J. O., & Park, D. C. (2012). Both left and right posterior parietal activations contribute to compensatory processes in normal aging. Neuropsychologia, 50(1), 55–66. doi: 10.1016/j.neuropsychologia.2011.10.022.
  • Jodo, E., & Kayama, Y. (1992). Relation of a negative ERP component to response inhibition in a Go/No-go task. Clinical Neurophysiology, 82(6), 477–482.
  • Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557–577.
  • Li, B. Y., Tang, H. D., & Chen, S. D. (2016). Retrieval deficiency in brain activity of working memory in amnesic mild cognitive impairment patients: A brain event-related potentials study. Frontiers in Aging Neuroscience, 8, 54.
  • Lijffijt, M., Lane, S. D., Meier, S. L., Boutros, N. N., Burroughs, S., Steinberg, J. L., … Swann, A. C. (2009). P50, N100, and P200 sensory gating: Relationships with behavioral inhibition, attention, and working memory. Psychophysiology, 46(5), 1059–1068.
  • Lorenzo-López, L., Amenedo, E., Pascual-Marqui, R. D., & Cadaveira, F. (2008). Neural correlates of age-related visual search decline: A combined ERP and sLORETA study. Neuroimage, 41(2), 511–524.
  • Luck, S. J. (2014). An introduction to the event-related potential technique. Cambridge, MA: The MIT Press.
  • Makeig, S., Bell, A. J., Jung, T. P., & Sejnowski, T. J. (1996). Independent component analysis of electroencephalographic data. In D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Advances in Neural Information Processing Systems (pp. 145–151).
  • McCarthy, G., & Wood, C. C. (1985). Scalp distributions of event-related potentials: An ambiguity associated with analysis of variance models. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 62(3), 203–208.
  • McEvoy, L. K., Pellouchoud, E., Smith, M. E., & Gevins, A. (2001). Neurophysiological signals of working memory in normal aging. Cognitive Brain Research, 11(3), 363–376.
  • Missonnier, P., Gold, G., Leonards, U., Costa-Fazio, L., Michel, J. P., Ibáñez, V., & Giannakopoulos, P. (2004). Aging and working memory: Early deficits in EEG activation of posterior cortical areas. Journal of Neural Transmission, 111(9), 1141–1154.
  • Miyake, A. (2001). Individual differences in working memory: Introduction to the special section. Journal of Experimental Psychological Genetics, 130, 163–168.
  • Nagel, I. E., Preuschhof, C., Li, S. C., Nyberg, L., Bäckman, L., Lindenberger, U., & Heekeren, H. R. (2009). Performance level modulates adult age differences in brain activation during spatial working memory. Proceedings of the National Academy of Sciences, 106(52), 22552–22557.
  • Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., … Chertkow, H. (2005). The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699.
  • Nyberg, L., Dahlin, E., Stigsdotter Neely, A., & Bäckman, L. (2009). Neural correlates of variable working memory load across adult age and skill: Dissociative patterns within the fronto‐parietal network. Scandinavian Journal of Psychology, 50(1), 41–46.
  • O’Connell, R. G., Balsters, J. H., Kilcullen, S. M., Campbell, W., Bokde, A. W., Lai, R., … Robertson, I. H. (2012). A simultaneous ERP/fMRI investigation of the P300 aging effect. Neurobiology of Aging, 33(10), 2448–2461.
  • Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: Selected studies of the event-related potential. International Journal of Medical Sciences, 2(4), 147.
  • Payer, D., Marshuetz, C., Sutton, B., Hebrank, A., Welsh, R. C., & Park, D. C. (2006). Decreased neural specialization in old adults on a working memory task. Neuroreport, 17(5), 487–491. doi: 10.1097/01.wnr.0000209005.40481.31.
  • Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184–187.
  • Persson, J., Lustig, C., Nelson, J. K., & Reuter-Lorenz, P. A. (2007). Age differences in deactivation: A link to cognitive control? Journal of Cognitive Neuroscience, 19(6), 1021–1032.
  • Petrella, J. R., Townsend, B. A., Jha, A. P., Ziajko, L. A., Slavin, M. J., Lustig, C., & Doraiswamy, P. M. (2005). Increasing memory load modulates regional brain activity in older adults as measured by fmri. The Journal Of Neuropsychiatry and Cinical Neurosciences, 17(1), 75–83.
  • Podell, J. E., Sambataro, F., Murty, V. P., Emery, M. R., Tong, Y., Das, S., & Mattay, V. S. (2012). Neurophysiological correlates of age-related changes in working memory updating. Neuroimage, 62(3), 2151–2160.
  • Polich, J. (2004). Clinical application of the P300 event-related brain potential. Physical Medicine and Rehabilitation Clinics, 15(1), 133–161.
  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148.
  • Redick, T. S., & Lindsey, D. R. (2013). Complex span and n-back measures of working memory: A meta-analysis. Psychonomic Bulletin & Review, 20(6), 1102–1113.
  • Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177–182.
  • Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., & Koeppe, R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12(1), 174–187.
  • Reuter-Lorenz, P. A., & Lustig, C. (2005). Brain aging: Reorganizing discoveries about the aging mind. Current Opinion in Neurobiology, 15(2), 245–251.
  • Saliasi, E., Geerligs, L., Lorist, M. M., & Maurits, N. M. (2013). The relationship between P3 amplitude and working memory performance differs in young and older adults. PLoS One, 8(5). doi:10.1371/journal.pone.0063701
  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403.
  • Schiff, S., Valenti, P., Andrea, P., Lot, M., Bisiacchi, P., Gatta, A., & Amodio, P. (2008). The effect of aging on auditory components of event-related brain potentials. Clinical Neurophysiology, 119(8), 1795–1802.
  • Schneider-Garces, N. J., Gordon, B. A., Brumback-Peltz, C. R., Shin, E., Lee, Y., Sutton, B. P., … Fabiani, M. (2010). Span, CRUNCH, and beyond: Working memory capacity and the aging brain. Journal of Cognitive Neuroscience, 22(4), 655–669.
  • Stebbins, G. T., Carrillo, M. C., Dorfman, J., Dirksen, C., Desmond, J. E., & Turner, D. A., ... & Gabrieli, J. D. (2002). Aging effects on memory encoding in the frontal lobes. Psychology and Aging, 17(1), 44. doi: 10.1037//0882-7974.17.1.44
  • Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 96(3), 471.
  • Wild-Wall, N., Falkenstein, M., & Gajewski, P. D. (2011). Age-related differences in working memory performance in a 2-back task. Frontiers in Psychology, 2, 186. doi:10.3389/fpsyg.2011.00186

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.