Publication Cover
Cognitive Neuroscience
Current Debates, Research & Reports
Volume 10, 2019 - Issue 3
312
Views
4
CrossRef citations to date
0
Altmetric
Articles

The impact of increasing similar interfering experiences on mnemonic discrimination: Electrophysiological evidence

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 129-138 | Received 27 Aug 2018, Published online: 04 Feb 2019

References

  • Altmann, E. M., & Schunn, C. D. (2012). Decay versus interference: A new look at an old interaction. Psychological Science, 23(11), 1435–1437.
  • Anderson, M. C. (2015). Incidental forgetting. In A. Baddeley, M. V. Eysenck, & M. C. Anderson (Eds.), Memory (2nd ed., pp. 231–264). Sussex: Psychology Press.
  • Anderson, M. L., James, J. R., & Kirwan, C. B. (2017). An event-related potential investigation of pattern separation and pattern completion processes. Cognitive Neuroscience, 8(1), 9–23.
  • Baker, S., Vieweg, P., Gao, F., Gilboa, A., Wolbers, T., Black, S. E., & Rosenbaum, R. S. (2016). The human dentate gyrus plays a necessary role in discriminating new memories. Current Biology, 26(19), 2629–2634.
  • Bakker, A., Kirwan, C. B., Miller, M., & Stark, C. E. (2008). Pattern separation in the human hippocampal CA3 and dentate gyrus. Science, 319(5870), 1640–1642.
  • Bekinschtein, P., Kent, B. A., Oomen, C. A., Clemenson, G. D., Gage, F. H., Saksida, L. M., & Bussey, T. J. (2013). BDNF in the dentate gyrus is required for consolidation of “pattern-separated” memories. Cell Reports, 5(3), 759–768.
  • Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14325–14329.
  • Burnside, K., Hope, C., Gill, E., & Morcom, A. M. (2017). Effects of perceptual similarity but not semantic association on false recognition in aging. PeerJ, 5, e4184.
  • Chadwick, M. J., Bonnici, H. M., & Maguire, E. A. (2014). CA3 size predicts the precision of memory recall. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10720–10725.
  • Cook, G. I., Marsh, R. L., & Hicks, J. L. (2005). Revisiting the role of recollection in item versus forced-choice recognition memory. Psychonomic Bulletin & Review, 12(4), 720–725.
  • Curran, T. (2000). Brain potentials of recollection and familiarity. Memory & Cognition, 28(6), 923–938.
  • Curran, T., Tepe, K. L., & Piatt, C. (2006). Event-related potential explorations of dual processes in recognition memory. In H. D. Zimmer, A. Mecklinger, & U. Lindenberger (Eds.), Binding in human memory: A neurocognitive approach (pp. 467–492). Oxford: Oxford University Press.
  • Curran, T., & Cleary, A. M. (2003). Using ERPs to dissociate recollection from familiarity in picture recognition. Brain Research. Cognitive Brain Research, 15(2), 191–205.
  • Duncan, K., Sadanand, A., & Davachi, L. (2012). Memory’s penumbra: Episodic memory decisions induce lingering mnemonic biases. Science, 337(6093), 485–487.
  • Düzel, E., Vargha-Khadem, F., Heinze, H. J., & Mishkin, M. (2001). Brain activity evidence for recognition without recollection after early hippocampal damage. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 8101–8106.
  • Düzel, E., Yonelinas, A. P., Mangun, G. R., Heinze, H. J., & Tulving, E. (1997). Event-related brain potential correlates of two states of conscious awareness in memory. Proceedings of the National Academy of Sciences of the United States of America, 94(11), 5973–5978.
  • Ezzyat, Y., Inhoff, M. C., & Davachi, L. (2018). Differentiation of human medial prefrontal cortex activity underlies long-term resistance to forgetting in memory. The Journal of Neuroscience, 38(48), 10244–10254.
  • Gallo, D. A. (2004). Using recall to reduce false recognition: Diagnostic and disqualifying monitoring. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30(1), 120–128.
  • Hardt, O., Nader, K., & Nadel, L. (2013). Decay happens: The role of active forgetting in memory. Trends in Cognitive Sciences, 17(3), 111–120.
  • Hintzman, L. D., & Curran, T. (1994). Retrieval dynamics ofrecognition and frequency judgments: Evidence for separate processes of familiarity and recall. Journal of Memory and Language, 33, 1–18.
  • Jung, T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2000). Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol, 111(10), 1745–1758.
  • Kassab, R., & Alexandre, F. (2018). Pattern separation in the hippocampus: Distinct circuits under different conditions. Brain Structure & Function, 223(6), 2785–2808.
  • Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E. S., Luck, S. J., … & Yee, C. M. (2014). Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51(1), 1–21.
  • Keresztes, A., Ngo, C. T., Lindenberger, U., Werkle-Bergner, M., & Newcombe, N. S. (2018). Hippocampal maturation drives memory from generalization to specificity. Trends in Cognitive Sciences, 22(8), 676–686.
  • Kesner, R. P. (2013). Role of the hippocampus in mediating interference as measured by pattern separation processes. Behavioural Processes, 93, 148–154.
  • Kesner, R. P., & Rolls, E. T. (2015). A computational theory of hippocampal function, and tests of the theory: New developments. Neuroscience and Biobehavioral Reviews, 48, 92–147.
  • Kim, J., & Yassa, M. A. (2013). Assessing recollection and familiarity of similar lures in a behavioral pattern separation task. Hippocampus, 23(4), 287–294.
  • Kirwan, C. B., & Stark, C. E. (2007). Overcoming interference: An fMRI investigation of pattern separation in the medial temporal lobe. Learning & Memory, 14(9), 625–633.
  • Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. Journal of Experimental Psychology. General, 139(3), 558–578.
  • Leal, S. L., & Yassa, M. A. (2018). Integrating new findings and examining clinical applications of pattern separation. Nature Neuroscience, 21(2), 163–173.
  • Liu, K. Y., Gould, R. L., Coulson, M. C., Ward, E. V., & Howard, R. J. (2016). Tests of pattern separation and pattern completion in humans – A systematic review. Hippocampus, 26(6), 705–717.
  • Lohnas, L. J., Duncan, K., Doyle, W. K., Thesen, T., Devinsky, O., & Davachi, L. (2018). Time-resolved neural reinstatement and pattern separation during memory decisions in human hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 115(31), E7418–E7427.
  • Loiotile, R. E., & Courtney, S. M. (2015). A signal detection theory analysis of behavioral pattern separation paradigms. Learning & Memory, 22(8), 364–369.
  • Makeig, S., Jung, T. P, Bell, A. J, Ghahremani, D, & Sejnowski, T. J. (1997). Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci U S A, 94(20), 10979–10984.
  • Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164, 177–190.
  • Morcom, A. M. (2015). Resisting false recognition: An ERP study of lure discrimination. Brain Research, 1624, 336–348.
  • Motley, S. E., & Kirwan, C. B. (2012). A parametric investigation of pattern separation processes in the medial temporal lobe. The Journal of Neuroscience, 32(38), 13076–13085.
  • Nilakantan, A. S., Bridge, D. J., Gagnon, E. P., VanHaerents, S. A., & Voss, J. L. (2017). Stimulation of the posterior cortical-hippocampal network enhances precision of memory recollection. Current Biology, 27(3), 465–470.
  • Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869.
  • Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., … & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37(2), 127–152.
  • Pidgeon, L. M., & Morcom, A. M. (2016). Cortical pattern separation and item-specific memory encoding. Neuropsychologia, 85, 256–271.
  • Rotello, C. M., & Heit, E. (1999). Two-process models of recognition memory: Evidence for recall-to-reject? Journal of Memory and Language, 40, 432–453.
  • Rugg, M. D., Cox, C. J., Doyle, M. C., & Wells, T. (1995). Event-related potentials and the recollection of low and high frequency words. Neuropsychologia, 33(4), 471–484.
  • Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences, 11(6), 251–257.
  • Sadeh, T., Ozubko, J. D., Winocur, G., & Moscovitch, M. (2014). How we forget may depend on how we remember. Trends in Cognitive Sciences, 18(1), 26–36.
  • Schurgin, M. W. (2018). Visual memory, the long and the short of it: A review of visual working memory and long-term memory. Attention, Perception & Psychophysics, 80(5), 1035–1056.
  • Wixted, J. T. (2004). The psychology and neuroscience of forgetting. Annual Review of Psychology, 55, 235–269.
  • Wixted, J. T. (2005). A theory about why we forget what we once knew. Current Directions in Psychological Science, 14(1), 6–9.
  • Xue, G. (2018). The neural representations underlying human episodic memory. Trends in Cognitive Sciences, 22(6), 544–561.
  • Yassa, M. A., & Stark, C. E. (2011). Pattern separation in the hippocampus. Trends in Neurosciences, 34(10), 515–525.
  • Yeung, L. K., Ryan, J. D., Cowell, R. A., & Barense, M. D. (2013). Recognition memory impairments caused by false recognition of novel objects. Journal of Experimental Psychology. General, 142(4), 1384–1397.
  • Yonelinas, A. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46(3), 441–517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.