98
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reduced Expression of Oligodendrocyte Linage-Enriched Transcripts During the Endoplasmic Reticulum Stress/Integrated Stress Response

, , , , , , , & show all
Article: 2371162 | Received 11 Nov 2023, Accepted 12 Apr 2024, Published online: 16 Jul 2024

References

  • Ajoolabady, A., Kaplowitz, N., Lebeaupin, C., Kroemer, G., Kaufman, R. J., Malhi, H., & Ren, J. (2023). Endoplasmic reticulum stress in liver diseases. Hepatology, 77(2), 619–639. https://doi.org/10.1002/hep.32562
  • Bankston, A. N., Forston, M. D., Howard, R. M., Andres, K. R., Smith, A. E., Ohri, S. S., Bates, M. L., Bunge, M. B., & Whittemore, S. R. (2019). Autophagy is essential for oligodendrocyte differentiation, survival, and proper myelination. Glia, 67(9), 1745–1759. https://doi.org/10.1002/glia.23646
  • Cheng, X., Wang, Y., He, Q., Qiu, M., Whittemore, S. R., & Cao, Q. (2007). Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells. Stem Cells, 25(12), 3204–3214. https://doi.org/10.1634/stemcells.2007-0284
  • Dubois, V., et al. (2020). Endoplasmic reticulum stress actively suppresses hepatic molecular identity in damaged liver. Molecular Systems Biology, 16, e9156.
  • Emery, B., & Lu, Q. R. (2015). Transcriptional and epigenetic regulation of oligodendrocyte development and myelination in the central nervous system. Cold Spring Harbor Perspectives in Biology, 7(9), a020461. https://doi.org/10.1101/cshperspect.a020461
  • Florio, F., Ferri, C., Scapin, C., Feltri, M. L., Wrabetz, L., & D'Antonio, M. (2018). Sustained Expression of negative regulators of myelination protects schwann cells from dysmyelination in a charcot-marie-tooth 1B mouse model. The Journal of Neuroscience, 38(18), 4275–4287. https://doi.org/10.1523/JNEUROSCI.0201-18.2018
  • Forston, M. D., Wei, G., Chariker, J. H., Stephenson, T., Andres, K., Glover, C., Rouchka, E. C., Whittemore, S. R., & Hetman, M. (2023). Enhanced oxidative phosphorylation, re-organized intracellular signaling, and epigenetic de-silencing as revealed by oligodendrocyte translatome analysis after contusive spinal cordinjury. Scientific Reports 13 (1), 21254. https://doi.org/10.1038/s41598-023-48425-6
  • Foufelle, F., & Fromenty, B. (2016). Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacology Research & Perspectives, 4, e00211.
  • Gao, Y., Wei, G. Z., Forston, M. D., Rood, B., Hodges, E. R., Burke, D., Andres, K., Morehouse, J., Armstrong, C., Glover, C., Slomnicki, L. P., Ding, J., Chariker, J. H., Rouchka, E. C., Saraswat Ohri, S., Whittemore, S. R., & Hetman, M. (2023). Opposite modulation of functional recovery following contusive spinal cord injury in mice with oligodendrocyte-selective deletions of Atf4 and Chop/Ddit3. Scientific Reports, 13(1), 9193. https://doi.org/10.1038/s41598-023-36258-2
  • Han, J., Back, S. H., Hur, J., Lin, Y. H., Gildersleeve, R., Shan, J., Yuan, C. L., Krokowski, D., Wang, S., Hatzoglou, M., Kilberg, M. S., Sartor, M. A., & Kaufman, R. J. (2013). ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nature Cell Biology, 15(5), 481–490. https://doi.org/10.1038/ncb2738
  • Hetz, C., & Papa, F. R. (2018). The unfolded protein response and cell fate control. Molecular Cell, 69(2), 169–181. https://doi.org/10.1016/j.molcel.2017.06.017
  • Huang, H., Teng, P., Du, J., Meng, J., Hu, X., Tang, T., Zhang, Z., Qi, Y. B., & Qiu, M. (2018). Interactive repression of MYRF self-cleavage and activity in oligodendrocyte differentiation by TMEM98 protein. The Journal of Neuroscience, 38(46), 9829–9839. https://doi.org/10.1523/JNEUROSCI.0154-18.2018
  • Hussien, Y., Cavener, D. R., & Popko, B. (2014). Genetic inactivation of PERK signaling in mouse oligodendrocytes: Normal developmental myelination with increased susceptibility to inflammatory demyelination. Glia, 62(5), 680–691. https://doi.org/10.1002/glia.22634
  • Jang, M. K., Park, H. J., & Jung, M. H. (2011). ATF3 represses PDX-1 expression in pancreatic beta-cells. Biochemical and Biophysical Research Communications, 412(2), 385–390. https://doi.org/10.1016/j.bbrc.2011.07.108
  • Kilanczyk, E., Saraswat Ohri, S., Whittemore, S. R., & Hetman, M. (2016). Anti-oxidant protection of NADPH-depleted oligodendrocyte precursor cells is dependent on supply of reduced glutathione. ASN Neuro, 8(4), 175909141666040. https://doi.org/10.1177/1759091416660404
  • Kim, W. H., Jang, M. K., Kim, C. H., Shin, H. K., & Jung, M. H. (2011). ATF3 inhibits PDX-1-stimulated transactivation. Biochemical and Biophysical Research Communications, 414(4), 681–687. https://doi.org/10.1016/j.bbrc.2011.09.132
  • Koenning, M., Jackson, S., Hay, C. M., Faux, C., Kilpatrick, T. J., Willingham, M., & Emery, B. (2012). Myelin gene regulatory factor is required for maintenance of myelin and mature oligodendrocyte identity in the adult CNS. The Journal of Neuroscience, 32(36), 12528–12542. https://doi.org/10.1523/JNEUROSCI.1069-12.2012
  • Krokowski, D., Han, J., Saikia, M., Majumder, M., Yuan, C. L., Guan, B.-J., Bevilacqua, E., Bussolati, O., Bröer, S., Arvan, P., Tchórzewski, M., Snider, M. D., Puchowicz, M., Croniger, C. M., Kimball, S. R., Pan, T., Koromilas, A. E., Kaufman, R. J., & Hatzoglou, M. (2013). A self-defeating anabolic program leads to beta-cell apoptosis in endoplasmic reticulum stress-induced diabetes via regulation of amino acid flux. Journal of Biological Chemistry, 288(24), 17202–17213. https://doi.org/10.1074/jbc.M113.466920
  • Kuypers, N. J., Bankston, A. N., Howard, R. M., Beare, J. E., & Whittemore, S. R. (2016). Remyelinating oligodendrocyte precursor cell miRNAs from the Sfmbt2 cluster promote cell cycle arrest and differentiation. The Journal of Neuroscience, 36(5), 1698–1710. https://doi.org/10.1523/JNEUROSCI.1240-15.2016
  • Leenders, F., Groen, N., de Graaf, N., Engelse, M. A., Rabelink, T. J., de Koning, E. J. P., & Carlotti, F. (2021). Oxidative stress leads to beta-cell dysfunction through loss of beta-cell identity. Frontiers in Immunology, 12, 690379. https://doi.org/10.3389/fimmu.2021.690379
  • Lei, Z., Yue, Y., Stone, S., Wu, S., & Lin, W. (2020). NF-kappaB activation accounts for the cytoprotective effects of PERK activation on oligodendrocytes during EAE. The Journal of Neuroscience, 40(33), 6444–6456. https://doi.org/10.1523/JNEUROSCI.1156-20.2020
  • Lin, W., & Popko, B. (2009). Endoplasmic reticulum stress in disorders of myelinating cells. Nature Neuroscience, 12(4), 379–385. https://doi.org/10.1038/nn.2273
  • Lin, W., Lin, Y., Li, J., Fenstermaker, A. G., Way, S. W., Clayton, B., Jamison, S., Harding, H. P., Ron, D., & Popko, B. (2013). Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis. The Journal of Neuroscience, 33(14), 5980–5991. https://doi.org/10.1523/JNEUROSCI.1636-12.2013
  • Lin, Y., Huang, G., Jamison, S., Li, J., Harding, H. P., Ron, D., & Lin, W. (2014). PERK activation preserves the viability and function of remyelinating oligodendrocytes in immune-mediated demyelinating diseases. American Journal of Pathology, 184(2), 507–519. https://doi.org/10.1016/j.ajpath.2013.10.009
  • Liu, C. L., Zhong, W., He, Y. Y., Li, X., Li, S., & He, K. L. (2016). Genome-wide analysis of tunicamycin-induced endoplasmic reticulum stress response and the protective effect of endoplasmic reticulum inhibitors in neonatal rat cardiomyocytes. Molecular and Cellular Biochemistry, 413(1-2), 57–67. https://doi.org/10.1007/s11010-015-2639-0
  • Maurel, M., Chevet, E., Tavernier, J., & Gerlo, S. (2014). Getting RIDD of RNA: IRE1 in cell fate regulation. Trends in Biochemical Sciences, 39(5), 245–254. https://doi.org/10.1016/j.tibs.2014.02.008
  • Najm, F. J., Lager, A. M., Zaremba, A., Wyatt, K., Caprariello, A. V., Factor, D. C., Karl, R. T., Maeda, T., Miller, R. H., & Tesar, P. J. (2013). Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nature Biotechnology, 31(5), 426–433. https://doi.org/10.1038/nbt.2561
  • Ohri, S. S., Hetman, M., & Whittemore, S. R. (2013). Restoring endoplasmic reticulum homeostasis improves functional recovery after spinal cord injury. Neurobiology of Disease, 58, 29–37. https://doi.org/10.1016/j.nbd.2013.04.021
  • Ohri, S. S., Maddie, M. A., Zhao, Y., Qiu, M. S., Hetman, M., & Whittemore, S. R. (2011). Attenuating the endoplasmic reticulum stress response improves functional recovery after spinal cord injury. Glia, 59(10), 1489–1502. https://doi.org/10.1002/glia.21191
  • Ohri, S. S., Mullins, A., Hetman, M., & Whittemore, S. R. (2014). Inhibition of GADD34, the stress-inducible regulatory subunit of the endoplasmic reticulum stress response, does not enhance functional recovery after spinal cord injury. PLOS One, 9(11), e109703. https://doi.org/10.1371/journal.pone.0109703
  • Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljujic, M., Samali, A., & Gorman, A. M. (2016). The integrated stress response. EMBO Reports, 17(10), 1374–1395. https://doi.org/10.15252/embr.201642195
  • Pandey, S., Shen, K., Lee, S.-H., Shen, Y.-A. A., Wang, Y., Otero-García, M., Kotova, N., Vito, S. T., Laufer, B. I., Newton, D. F., Rezzonico, M. G., Hanson, J. E., Kaminker, J. S., Bohlen, C. J., Yuen, T. J., & Friedman, B. A. (2022). Disease-associated oligodendrocyte responses across neurodegenerative diseases. Cell Reports, 40(8), 111189. https://doi.org/10.1016/j.celrep.2022.111189
  • Penas, C., Guzmán, M., Verdú, E., Forés, J., Navarro, X., & Casas, C. (2007). Spinal cord injury induces endoplasmic reticulum stress with different cell-type dependent response. Journal of Neurochemistry, 102(4), 1242–1255. https://doi.org/10.1111/j.1471-4159.2007.04671.x
  • Pick, T., Gamayun, I., Tinschert, R., & Cavalié, A. (2023). Kinetics of the thapsigargin-induced Ca(2+) mobilisation: A quantitative analysis in the HEK-293 cell line. Frontiers in Physiology, 14, 1127545. https://doi.org/10.3389/fphys.2023.1127545
  • Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., & Vilo, J. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Research, 47(W1), W191–W198. https://doi.org/10.1093/nar/gkz369
  • Razani-Boroujerdi, S., Partridge, L. D., & Sopori, M. L. (1994). Intracellular calcium signaling induced by thapsigargin in excitable and inexcitable cells. Cell Calcium, 16(6), 467–474. https://doi.org/10.1016/0143-4160(94)90076-0
  • Reich, S., Nguyen, C. D. L., Has, C., Steltgens, S., Soni, H., Coman, C., Freyberg, M., Bichler, A., Seifert, N., Conrad, D., Knobbe-Thomsen, C. B., Tews, B., Toedt, G., Ahrends, R., & Medenbach, J. (2020). A multi-omics analysis reveals the unfolded protein response regulon and stress-induced resistance to folate-based antimetabolites. Nature Communications, 11(1), 2936. https://doi.org/10.1038/s41467-020-16747-y
  • Rendleman, J., Cheng, Z., Maity, S., Kastelic, N., Munschauer, M., Allgoewer, K., Teo, G., Zhang, Y. B. M., Lei, A., Parker, B., Landthaler, M., Freeberg, L., Kuersten, S., Choi, H., & Vogel, C. (2018). New insights into the cellular temporal response to proteostatic stress. eLife, 7, e39054. https://doi.org/10.7554/eLife.39054
  • Rodland, K. D., Wersto, R. P., Hobson, S., & Kohn, E. C. (1997). Thapsigargin-induced gene expression in nonexcitable cells is dependent on calcium influx. Molecular Endocrinology, 11(3), 281–291. https://doi.org/10.1210/mend.11.3.9894
  • Ron, D., & Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology, 8(7), 519–529. https://doi.org/10.1038/nrm2199
  • Samanta, J., & Kessler, J. A. (2004). Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development, 131(17), 4131–4142. https://doi.org/10.1242/dev.01273
  • Saraswat Ohri, S., Andres, K. R., Howard, R. M., Brown, B. L., Forston, M. D., Hetman, M., & Whittemore, S. R. (2023). Acute pharmacological inhibition of protein kinase R-like endoplasmic reticulum kinase signaling after spinal cord injury spares oligodendrocytes and improves locomotor recovery. Journal of Neurotrauma, 40(9-10), 1007–1019.
  • Saraswat Ohri, S., Howard, R. M., Liu, Y., Andres, K. R., Shepard, C. T., Hetman, M., & Whittemore, S. R. (2021). Oligodendrocyte-specific deletion of Xbp1 exacerbates the endoplasmic reticulum stress response and restricts locomotor recovery after thoracic spinal cord injury. Glia, 69(2), 424–435. https://doi.org/10.1002/glia.23907
  • Scapin, C., Ferri, C., Pettinato, E., Bianchi, F., Del Carro, U., Feltri, M. L., Kaufman, R. J., Wrabetz, L., & D'Antonio, M. (2020). Phosphorylation of eIF2alpha promotes schwann cell differentiation and myelination in CMT1B mice with activated UPR. The Journal of Neuroscience, 40(42), 8174–8187. https://doi.org/10.1523/JNEUROSCI.0957-20.2020
  • Sharma, R. B., Landa-Galván, H. V., & Alonso, L. C. (2021). Living dangerously: Protective and harmful ER stress responses in pancreatic beta-cells. Diabetes, 70(11), 2431–2443. https://doi.org/10.2337/dbi20-0033
  • Stone, S., Jamison, S., Yue, Y., Durose, W., Schmidt-Ullrich, R., & Lin, W. (2017). NF-kappaB activation protects oligodendrocytes against inflammation. The Journal of Neuroscience, 37(38), 9332–9344. https://doi.org/10.1523/JNEUROSCI.1608-17.2017
  • Walter, P., & Ron, D. (2011). The unfolded protein response: From stress pathway to homeostatic regulation. Science, 334(6059), 1081–1086. https://doi.org/10.1126/science.1209038
  • Watson, F. L., Porcionatto, M. A., Bhattacharyya, A., Stiles, C. D., & Segal, R. A. (1999). TrkA glycosylation regulates receptor localization and activity. Journal of Neurobiology, 39(2), 323–336. https://doi.org/10.1002/(SICI)1097-4695(199905)39:2<323::AID-NEU15>3.0.CO;2-4
  • Wedel, M., Fröb, F., Elsesser, O., Wittmann, M.-T., Lie, D. C., Reis, A., & Wegner, M. (2020). Transcription factor Tcf4 is the preferred heterodimerization partner for Olig2 in oligodendrocytes and required for differentiation. Nucleic Acids Research, 48(9), 4839–4857. https://doi.org/10.1093/nar/gkaa218
  • Weng, Q., Chen, Y., Wang, H., Xu, X., Yang, B., He, Q., Shou, W., Chen, Y., Higashi, Y., van den Berghe, V., Seuntjens, E., Kernie, S. G., Bukshpun, P., Sherr, E. H., Huylebroeck, D., & Lu, Q. R. (2012). Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system. Neuron, 73(4), 713–728. https://doi.org/10.1016/j.neuron.2011.12.021
  • Whittemore, S. R., Saraswat Ohri, S., Forston, M. D., Wei, G. Z., & Hetman, M. (2022). The proteostasis network: A global therapeutic target for neuroprotection after spinal cord injury. Cells, 11(21), 3339. https://doi.org/10.3390/cells11213339
  • Yang, C., Chen, S. J., Chen, B. W., Zhang, K. W., Zhang, J. J., Xiao, R., & Li, P. G. (2021). Gene expression profile of the human colorectal carcinoma LoVo cells treated with sporamin and thapsigargin. Frontiers in Oncology, 11, 621462. https://doi.org/10.3389/fonc.2021.621462
  • Yang, N., Zuchero, J. B., Ahlenius, H., Marro, S., Ng, Y. H., Vierbuchen, T., Hawkins, J. S., Geissler, R., Barres, B. A., & Wernig, M. (2013). Generation of oligodendroglial cells by direct lineage conversion. Nature Biotechnology, 31(5), 434–439. https://doi.org/10.1038/nbt.2564
  • Yu, Y., Chen, Y., Kim, B., Wang, H., Zhao, C., He, X., Liu, L., Liu, W., Wu, L. M., Mao, M., Chan, J. R., Wu, J., & Lu, Q. R. (2013). Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation. Cell, 152(1-2), 248–261. https://doi.org/10.1016/j.cell.2012.12.006
  • Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O'Keeffe, S., Phatnani, H. P., Guarnieri, P., Caneda, C., Ruderisch, N., Deng, S., Liddelow, S. A., Zhang, C., Daneman, R., Maniatis, T., Barres, B. A., & Wu, J. Q. (2014). An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. The Journal of Neuroscience, 34(36), 11929–11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014