1,054
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Algae as biofuel

&

References

  • European Commission – Joint Research Center. Impacts of the EU Biofuel Target on Agricultural Markets and Land Use: A Comparative Modelling Assessment. European Commission – Join Research Institute, Seville (2010).
  • Heinimo J. Methodological aspects on international biofuels trade: international Streams and trade of solid and liquid biofuels in Finland. Biomass Bioenerg. 32(8), 702–716 (2008).
  • Gouveia L. Microalgae as a feedstock for biofuels. Springer Briefs in Microbiology. doi: 10.1007/978-3-642-17997-6_1 (2011).
  • Payne WA. Are biofuels antithetic to long-term sustainability of soil and water resources. In: Advances in Agronomy, DLSparks (Ed.): Elsevier, San Diego, 1–4, 105 (2010).
  • Russo D, Dassisti M, Lawlor V, Olabi A. State of the art of biofuels from pure plant oil. Renew. Sust. Energ Rev. 16, 4056–4070 (2012).
  • Nigam P, Singh A. Production of liquid biofuels from renewable sources. Prog. Energ. Combust. Sci. 37, 52–68 (2011).
  • Oilgae. Oilgae Guide to Fuels from Macroalgae. Tamilnadu, India (2010).
  • Harun R, Yip JWS, Thiruvenkadam S, Ghani WAWAK, Cherrington T, Danquah MK et al. Algal biomass conversion to bioethanol – a step-by-step assessment. Biotechnol. J. 9, 73–86 (2014).
  • Oilgae Report. Oilgae Guide to Fuels from Macroalgae. Tamilnadu, India. Retrieved from http://www.oilgae.com/ref/report/oilgae_reports.html (2014).
  • Trent J. Stop hunting energy, start growing it. New Scientist 215, 30–31 (2012).
  • Schenk MP, Thomas HSR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B, et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res. 1, 20–43 (2008).
  • Vijayaraghavan K, Hemanathan K. Biodiesel Production from Freshwater Algae. Energ. Fuel. 23, 5448–5453 (2009).
  • Patil V, Tran KQ, Giselrød HR. Towards Sustainable Production of Biofuels from Microalgae. Int. J. Molec. Sci. 9(7), 1188–1195 (2008).
  • John RP, Anisha GS, Nampoothiri KM, Pandey A. Micro and Macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102, 186–193 (2011).
  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007).
  • Miao X, Wu Q, Yang C. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis. 71, 855–863 (2004).
  • Clarens AF, Resurreccion EP, White MA, Colosi LM, et al. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol. 44, 1813–1819 (2010).
  • Vandendriessche S, Vincx M, Degraer S. Floating seaweed in the neustonic environment: A case study from Belgian coastal waters. J. Sea Res. 55, 103–112 (2006).
  • Neushul M. Seaweed for war: California's World War I kelp industry. Technol. Culture. 30(3), 561–583 (1989).
  • Brekke K. Butanol an energy alternative. Ethanol Today 36–39 (2007).
  • McHugh DJ. A guide to the seaweed industry. FAO Fisheries Technical Paper No 441, 105 (2003).
  • Kraan S. Mass cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig. Adapt. Strateg. Glob Change. DOI: 10.1007/s11027-010-9275-5 (2010).
  • ISO. Environmental Management– Life Cycle Assessment – Principle And Framework. (1997).
  • SETAC. Guidelines for life-cycle assessment: a ‘Code of Practice’ from the workshop held at Sesimbra, Portugal, 31 March – 3 April 1993 Society of Environmental Toxicology and Chemistry (SETAC). J. Environmental Sci. Poll. Res. (1993).
  • Morales AM, Boldrin A, Karakashev DB, Holdt SL, Angelidaki I, Astrup T. Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresour. Technol. 129, 92–99 (2013).
  • Slade R, Bauen A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenerg. 53, 29–38 (2013).
  • Alvarado MM, Boldrin A, Karakashev DB, Holdt SL, Angelidaki I, Astrup T. Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresour. Technol. 129, 92–99 (2013).
  • Bird K, Benson P. Seaweed Cultivation for Renewable Resources. Elsevier Science, Amsterdam & New York (1987).
  • Gao K, Mckinley K. Use of macroalgae for marine biomass production and CO2 remediation: a review. J. Appl. Phycol. 6, 45–60 (1994).
  • Aresta M, Dibenedetto A, Barberio G. Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of computing software for an LCA study. Fuel Process. Technol. 86, 1679–1693 (2005).
  • Richmond A. Handbook of microalgal culture: Biotechnol. Appl. Phycol. Blackwell Science Ltd., Oxford (2004).
  • Martone PT, Estevez JM, Lu FC, Ruel K, Denny MW, Somerville C, Ralph J, et al. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol. 19(2), 169–175 (2009).
  • Forro J. Microbial degradation of marine biomass. In Seaweed Cultivation for Renewable Resources. Bird, KT and Benson, PH (Eds). Elsevier Science Ltd., Amsterdam, (1987).
  • McDermid KJ, Stuercke B. Nutritional composition of edible Hawaiian seaweeds. J. Appl. Phycol. 15(6), 513–524 (2003).
  • Chu WL, Norazmi M, Phang SM, et al. Fatty acid composition of some Malaysian seaweeds. Malaysian. J. Sci. 22, 21–27 (2003).
  • Mata TM, Martins AA, Caetano NS, et al. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev. 14, 217–232 (2010).
  • Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB. A review of the potential of marine algae as a source of biofuel in Ireland. Dublin, Ireland. Sustainable Energy Ireland (2009).
  • Hennenberg KJ, Fritsche U, Herrera R, Eggert A, Renato M, Hunt S, Bunnag B, et al. Aquatic biomass: sustainable bioenergy from algae. Issue Paper, November (2009).
  • Maxwell EL, Folger AG, Hogg SE. Resource evaluation and site selection for microalgae production systems. SERI/TR-215–2484 (1985).
  • Garcia RG, Gomezpinchetti JL, Robledo DR, Sosa P. Actual, potential and speculative applications of seaweed cellular biotechnology-some specific comments on gelidium. Hydrobiologia. 22, 181–194 (1991).
  • Kawashima Y, Tokuda H. Regeneration from callus of undaria pinnatifida (Harvey) Suringar (laminariales, phaeophyta). Hydrobiologia 261, 385–389 (1993).
  • Collantes G, Melo C, Candia A. Micropropagation by explants of Gracilaria, Chilensis Bird, McLachlan and Oliveira. J. Appl. Phycol. 16, 203–213 (2004).
  • Kumar, GR, Reddy CRK, Jha B. Callus induction and thallus regeneration from callus of phycocolloid yielding seaweeds from the Indian Coast. J. Appl. Phycol. 19, 15–25 (2007)
  • Reedy DC, Brzezinski MA, Coury D A, Graham WM, Petty RL, et al. Neutral lipids in macroalgal spores and their role in swimming. Marine Biol. 133(4), 737–744 (1999).
  • Dai JX, Zhang QQ, Bao ZM. Genetic breeding and seedling raising experiments with porphyra protoplasts. Aquaculture 111, 139–145 (1993).
  • Dai JX, Yang Z, Liu WS, Bao ZM, Han BQ, Shen SD, Zhou LR, et al. Seedling production using enzymatically isolated thallus cells and its application in porphyra cultivation. Hydrobiologia 512, 127–131 (2004).
  • Dipakkore S, Reddy CRK, Jha B. Production and seeding of protoplasts of porphyra okhaensis (Bangiales, Rhodophyta) in laboratory culture. J. Appl. Phycol. 17, 331–337 (2005).
  • Friedlander M. Israeli R & D activities in seaweed cultivation. Israel J. Plant Sci. 56, 15–28 (2008).
  • Hanisak MD. Cultivation of Gracilaria and other Marcoalgae in Florida for Energy Consumption in Seaweed Cultivation for Renewable Resources. Bird KT, Benson PH (Eds). Elsevier, Amsterdam, 191–218 (1987).
  • Benson BC, Gutierrez WMT, Rusch KA. The Development of a mechanistic model to investigate the impacts of the light dynamics on algal productivity in a hydraulically integrated serial turbidostat algal reactor. Aquacult Eng 36(2), 198–211 (2007).
  • Chynoweth DP. Review of biomethane from marine biomass. University of Florida, 1–207 (2002).
  • Demirbas MF, Biofuels from algae for sustainable development. Appl. Energ. 88, 3473–3480 (2011).
  • Sforza E, Bertucco A, Morosinotto T, Giacometti G. Photobioreactors for microalgal growth and oil production with nannochloropsis salina: from lab-scale experiments to large-scale design. Chem. Eng. Res. Des. Trans. Inst. Chem. Eng. Part a, 90(9), 1151–1158 (2012).
  • Lam MK, Lee KT. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol. Adv. 30, 673–690 (2012).
  • Snow A, Smith V. Genetically engineered algae for biofuels: a key role for ecologists. BioScience. 62(8), 765–768 (2012).
  • Sarisky RV. National algal biofuels technology roadmap. Department of Energy: Energy Efficiency and Renewable Energy (2012).
  • Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Biores. Technol. 99(10), 4021–4028 (2008).
  • Apt KE, Behrens PW. Commercial developments in microalgal biotechnology. J. Phycol. 35, 215–226 (1999).
  • Chen F, Johns MR. Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem. 31, 60–604 (1996).
  • Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126, 499–507 (2006).
  • Barclay WR, Meager KM, Abril JR. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae- like microorganisms. J. App. Phycol. 6(2), 123–129 (1994).
  • Gross M, Development and optimization of algal cultavation systems. Graduate Thesis and Dissertations. Paper 13138 (2013)
  • Pyle D, Denver J, Wen Z. Producing docosahexaenoic acid (DHA) rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J. Agri. Food Chem. 56 (11), 3933–3939 (2008).
  • Demirbas A, Demirbas MF. Algae Energy: Algae as a New Source of Biodiesel. Springer, London, Dordrecht, Heidelberg, New York (2010).
  • Williams JA. Keys to bioreactor selection. CEP Mag. 34–41 (2002).
  • Oswald WJ. Introduction to advanced integrated wastewater ponding systems. Water, Sci. Technol. 24(5), 1–7 (1991).
  • Green FB, Bernstone LS, Lundquist TJ, Oswald WJ. Advanced integrated wastewater pond systems for nitrogen removal. Water Sci. Technol. 33 (7), 207–217 (1996).
  • Menetrez MY. An overview of algae biofuel production and potential environmental impact. Environ. Sci. Technol. 46, 7073–7085 (2012).
  • Dodd JC, Anderson JL. Integrated high-rate pond algae harvesting system. Prog. Water Technol. 9(3), 713 (1977).
  • Butterfi BA, Jones J. Harvesting of algae grown in agricultural wastewaters. Transactions-American Geophysical Union 50(11), 612 (1969).
  • McGarry MG, Tongkasa C. Water reclamation and algae harvesting. Water Poll. Cont. Fed. Res. J. 43(5), 824 (1971).
  • Lee SJ, Kim SB, Kwon GS, Yoon BD, Oh HM. Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Lett. Appl. Microbiol. (27), 14 (1998).
  • Knuckey RM, Brown MR, Robert R, Frampton DMF, et al. Production of microalgal concentrations by flocculation and their assessment as aquaculture feeds. Aquacult. Engg. 35(3), 300 (2006).
  • Pan JR, Huang CP, Chuang YC, Wu CC. Dewatering characteristics of algae-containing alum sludge. Colloids Surface A 150(1–3), 185 (2001).
  • Sukenik A, Shelaf G. Algal auto flocculation-verification and proposed mechanism. Biotechnol. Bioengg. 26(2), 142–147 (1984).
  • Lavoie AJ, Delanoue. Harvesting of scenedesmus-obliquus in wastewaters-auto-flocculation or bioflocculation. Biotechnol. Bioengg. 30(7), 852–859 (1987).
  • Chen G. Electrochemical technologies in wastewater treatment. Separ. Purif. Technol. 38(1), 11–41 (2004).
  • Mollah MP. Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mat. B114, 199 (2004).
  • Poelman E, Pauw N. Potential of electrolytic flocculation for recovery of micro-algae. Resour. Conser. Recy. 19, 1–10 (1997).
  • Sim TS, Goh A, Becker EW. Comparison of centrifugation, dissolved air flotation and drum filtration techniques for harvesting sewage-grown algae. Biomass. 16(1), 51 (1988).
  • Botes V, Vanvuuren LRJ. Dissolved air flotation for the removal of algae and inorganic turbidity on a large-scale. Water Supply: IWSA/IAWPRC Joint Specialized Conference on Coagulation Flocculation, Filtration, Sedimentation and Flotation 9(1), 133 (1991).
  • Edzwald JK. Algae, bubbles, coagulants and dissolved air flotation. Water Sci. Technol. 27(10), 67 (1993).
  • Phoochinda W, White DA. Removal of algae using froth flotation. Environ. Technol. 24(1), 87 (2003).
  • Kwak DH, Kim SJ, Jung HJ, Won CH, Kwon SB. Removal of clay and blue-green algae particles through zeta potential and particle size distribution in the dissolved air flotation process. Water Sci. Technol. Water Supp. 6(1), 95 (2005).
  • Bare WFR, Jones NB, Middlebrooks EJ. Algae removal using dissolved air flotation. Water Poll. Control Fed. Res. J. 47(1), 153 (1975).
  • Koopman BEP, Lincoln. Autoflotation harvesting of algae from high-rate pond effluents. Agricult. Waste. 5(4), 231 (1983).
  • Ferguson C, Logsdon GS, Curley D, Ferguson C. Comparison of dissolved air flotation and direct filtration. Water Sci. Technol. 31(3–4), 113 (1995).
  • Downing JB, Bracco E, Green FB, Ku AY, Lundquist TJ, Zubieta IX, Oswald WJ, et al. Low cost reclamation using the advanced integrated wastewater pond systems technology and reverse osmosis. Water Sci. Technol. 45(1), 117 (2002).
  • Saidam MY, Butler D. Algae removal by horizontal flow rock filters. Adv. Slow Sand Altern. Biolog. Filt. 327 (1996).
  • Oswald WJ. Terrestrial approaches to integration of waste treatment. Waste Manage. Res. 9 (5), 477–484 (1991).
  • Molina GE, Belarbi EH, Fernández FG, Medina RA, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. J. Biotechnol. Adv. (20), 491–515 (2003).
  • Johnson M, Wen Z. Development of an attached microalgal growth system for biofuel production. Appl. Microbiol. Biotechnol. 85(3), 525–534 (2010).
  • Roesijadi G, Copping AE, Huesemann MH, Forster J, Benemann JR. Techno-economic feasibility analysis of offshore seaweed farming for bioenergy and biobased products. Battelle Pacific Northwest Division Report Number PNWD-3931 (2008).
  • Ugarte R, Sharp G. A new approach to seaweed management in Eastern Canada: The case of ascophyllum nodosum. Cah. Biol. 42, 63–70 (2001).
  • Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ, Tester JW. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energ. Environ. Sci. 1, 32–65 (2008).
  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B et al. Future prospects of microalgal biofuel production systems. Trends Plant Sci. 15, 554–564 (2010).
  • Norsker NH, Barbosa MJ, Vermue MH, Wijffels RH. Microalgal production – a close look at the economics. Biotechnol Adv. 29, 24–7 (2011).
  • Raja R, Hemaiswarya S, Ashok KN, Sridhar S, Rengasamy RA. Perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 34, 77–88 (2008).
  • Durmaz Y, Vitamin E. (a-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 272, 717–722 (2007).
  • Schlesinger WH. Biogeochemistry: An Analysis of Global Change. Academic Press, California, USA (1991).
  • Hussain K, Nawaz K, Majeed A, Feng L. Economically effective potential of algae for biofuel production. World Appl. Sci. J. 9, 1313–1323 (2010).
  • Kwok R. Cellulosic ethanol hits roadblock. Nature 461, 582–583 (2009).
  • Mascarelli AL. Gold rush for algae. Nature 461, 460–4 (2009).
  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trend. Biotechnol. 26, 126–31 (2008).
  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C. An economic and technical evaluation of microalgal biofuels. Nat Biotechnol. 28, 126–128 (2010).
  • Carvalho AP, Meireles LA, Malcata FX. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Prog. 22, 1490–1506 (2006).
  • Sanchez MA, Ceron GMC, Contreras GA, Garcia CF, Molina GE, Chisti Y. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem. Eng. J. 16, 287–97 (2003).
  • Chisti Y, Jinyue Y. Energy from Algae: Current Status and future trends Algal biofuels – a status report. Appl Energy 88, 3277–3279 (2011)
  • Kadam KL. Environmental Implications of Power Generation via coal microalgae cofiring. Energy 27, 905–922 (2002).
  • Lardon L, Helia A, Sialve B, Steyer JP, Bernard O. Life-Cycle Assessment of Biodiesel Production from Microalgae. Environ. Sci. Technol. 43(17), 6475–6481 (2009).
  • Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Biores. Technol. 101, 1406–1413 (2010).
  • Campbell PK, Beer T, Batten D. Life cycle assessment of biodiesel production from microalgae in ponds. Biores. Technol. 102, 50–56 (2010).
  • Pienkos PT. Potential for Biofuels from Algae. NREL/PR-510-42414. National Renewable Energy Laboratory (NREL), Golden, CO. (2007).
  • Morris B. The big boys of industry move into next-generation algae fuels. Politics in the Zeros (2009).
  • De Smet B, White PR, Owens JW. Environmental Life-cycle Assessment. McGraw-Hill, New York (1996).
  • Chanakya HN, Mahapatra D, Sarada R, Chauhan VS, Abitha R, et al. Sustainability of large-scale algal biofuel production in India. J. Indian Inst. Sci. 92(1), 63–98 (2012).
  • Cal Poly. Controlled Environment: Agriculture & Energy: Working Group. California Polytechnic State University (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.