461
Views
32
CrossRef citations to date
0
Altmetric
Research Articles

Lignocellulosic feedstock conversion, inhibitor detoxification and cellulosic hydrolysis – a review

&

References

  • Gupta R, Sharma KK, Kuhad RC. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour. Technol. 100, 1214–1220 (2009).
  • Keshwani DR, Cheng JJ. Switchgrass for bioethanol and other value-added applications: a review. Bioresour. Technol. 100, 1515–1523 (2009).
  • Bayrakci AG, Koçar G. Second-generation bioethanol production from water hyacinth and duckweed in Izmir: a case study. Renew. Sustain. Energy Rev. [Internet] . 30, 306–316 (2014). Available from: http://linkinghub.elsevier.com/retrieve/pii/S1364032113007107.
  • Kumar A, Singh LK, Ghosh S. Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresour. Technol. 100, 3293–3297 (2009).
  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol. 24, 549–556 (2006).
  • Dias DE, Oliveira ME, Vaughan BE, Rykiel EJ. Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience 55, 593 (2005).
  • Shapouri H, Gallagher P. USDA's 2002 Ethanol cost-of-production survey. Energy Policy [Internet]. Agricultur, 1099–1110 (2005). Available from: http://doi.acm.org/10.1145/1376616.1376726.
  • Demirbas A. The importance of bioethanol and biodiesel from biomass. Energ. Sources, B Econ. Plan. Pol. 3, 177–185 (2008).
  • EPA. Greenhouse Gas Equivalencies Calculator [Internet]. (2014). Available from: http://www.epa.gov/cleanenergy/energy-resources/calculator.html#results.
  • Zhang J, Osmani A, Awudu I, Gonela V. An integrated optimization model for switchgrass-based bioethanol supply chain. Appl. Energ. 102, 1205–1217 (2013).
  • Macrelli S, Mogensen J, Zacchi G. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnol. Biofuels 5, 1–8 (2012).
  • Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008).
  • Ghosh P, Ghose TK. Bioethanol in India: recent past and emerging future. Adv. Biochem. Eng. Biotechnol. 85, 1–27 (2003).
  • Geddes CC, Nieves IU, Ingram LO. Advances in ethanol production. Curr. Opin. Biotechnol. 22, 312–319 (2011).
  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Bioethanol production from agricultural wastes: an overview. Renew. Energ. 37, 19–27 (2012).
  • Chandel AK, Singh O V., Venkateswar Rao L, Chandrasekhar G, Lakshmi Narasu M. Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol by Pichia stipitis NCIM3498. Bioresour. Technol. 102, 1709–1714 (2011).
  • Huber GW, Dale BE. Grassoline at the pump. Sci. Am. 301, 52–59 (2009).
  • Demain A, Newcomb M, Wu J. Cellulase, Clostridia, and ethanol. This review is dedicated to the late Marek Romaniec, who brought …. Microbiol. Mol. Biol. Rev. [Internet]. (2004). Available from: http://mmbr.asm.org/cgi/content/abstract/69/1/124\ nfile:///Users/sergiosnicolaou/Documents/Papers2/Articles/2004/Demain/Demain 2004 Cellulase Clostridia and Ethanol This review is dedicated to the late Marek Romaniec 
who brought ….pdf\npapers2://publication/uuid/E274F62A-804A-4D38-B419-6B88
C0ECB0B9.
  • Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg. 26, 361–375 (2004).
  • Gupta VK, Potumarthi R, O'Donovan A, Kubicek CP, Sharma GD, Tuohy MG. Bioenergy research: an overview on technological developments and bioresources. In: Bioenerg. Res. Adv. Appl. 23–47 (2014).
  • Olsson L, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18, 312–331 (1996).
  • Dale BE. Biobased industrial products: Bioprocess engineering when cost really counts. Editorial. Biotechnol. Prog. 15, 775–776 (1999).
  • Wayman M, Parekh SR. Biotechnology of Biomass Conversion (1990).
  • Neureiter M, Danner H, Thomasser C, Saidi B, Braun R. Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl. Biochem. Biotechnol. 98–100, 49–58 (2002).
  • Dogaris I, Vakontios G, Kalogeris E, Mamma D, Kekos D. Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind. Crops Prod. 29, 404–411 (2009).
  • Shao X, Lynd L, Wyman C, Bakker A. Kinetic modeling of cellulosic biomass to ethanol via simultaneous saccharification and fermentation: Part I. accommodation of intermittent feeding and analysis of staged reactors . Biotechnol. Bioeng. 102, 59–65 (2009).
  • Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007).
  • Severe J, ZoBell DR. Review: Technical aspects for the utilization of small grain straws as feed energy sources for ruminants: emphasis on beef cattle. Digital Commons: All Current Publications. Paper 95. Available at http://digitalcommons.usu.edu/extension_curall/95 (2012).
  • Tutt M, Olt J, et al. Suitability of various plant species for bioethanol production. Agron. Res. 9, 261–267 (2011).
  • Méndez-VilasA. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. FORMATEX Microbiology Series No. 2, book Vol. 2, 897–907 (2010).
  • Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. [Internet]. 83(1), 1–11 (2002). Available from: http://www.ncbi.nlm.nih.gov/pubmed/12058826.
  • Wesselink B, Harmsen R, Wolfgang E. Energy Savings 2020: How to triple the impact of energy saving policies in Europe – a contributing study to Roadmap 2050 [Internet]. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:ENERGY+SAVINGS+2020+How+to+triple+the+impact+of+energy+saving+policies+in+Europe#1.
  • Jung HG, Vogel KP. Influence of lignin on digestibility of forage cell wall material. J. Anim. Sci. 62(6), 1703–1712 (1986).
  • McLaughlin SB, Samson R, Bransby D, Wiselogel A. Evaluating physical, chemical, and energetic properties of perennial grasses as biofuels. Proc. BioEnergy. 15–20 (1996).
  • Sørensen A, Teller PJ, Hilstrøm T, Ahring BK. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment. Bioresour. Technol. 99, 6602–6607 (2008).
  • Sreenath HK, Koegel RG, Moldes AB, Jeffries TW, Straub RJ. Ethanol production from alfalfa fiber fractions by saccharification and fermentation. Process Biochem. 36, 1199–1204 (2001).
  • Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava AK. Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J. Microbiol. Biotechnol. 24, 667–673 (2008).
  • Jingura RM, Musademba D, Matengaifa R. An evaluation of utility of Jatropha curcas L. as a source of multiple energy carriers . Int. J. Eng. Sci. Technol. 2(7) (2010).
  • Yamamura M, Akashi K, Yokota A, et al. Characterization of Jatropha curcas lignins. Plant Biotechnol. 29(2), 179–183 (2012).
  • Ververis C, Georghiou K, Danielidis D, et al. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour. Technol. 98, 296–301 (2007).
  • Chandel AK, Lakshmi Narasu M, Chandrasekhar G, Manikyam A, Venkateswar Rao L. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour. Technol. 100, 2404–2410 (2009).
  • Pasha C, Nagavalli M, Venkateswar Rao L. Lantana camara for fuel ethanol production using thermotolerant yeast. Lett. Appl. Microbiol. 44, 666–672 (2007).
  • Zhao X, Zhang L, Liu D. Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem. Bioresour. Technol. 99, 3729–3736 (2008).
  • Zhao X, Liu D. Chemical and thermal characteristics of lignins isolated from Siam weed stem by acetic acid and formic acid delignification. Ind. Crops Prod. 32, 284–291 (2010).
  • Ackerson MD, Clausen EC, Gaddy JL. Production of ethanol from MSW via concentrated acid hydrolysis of the lignocellulosic fraction. 16th IGT Conference on Energy from Biomass Wastes, Washington, DC, USA, 25–29March 1991, 725–743 (1991).
  • Harmsen P, Huijgen W. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass [Internet]. Available from: http://www.ecn.nl/docs/library/report/2010/e10013.pdf.
  • Komilis DP, Ham RK. The effect of lignin and sugars to the aerobic decomposition of solid wastes. In: Waste Manage. 419–423 (2003).
  • Lamborn J. Characterisation of municipal solid waste composition into model inputs. Proceedings of the Third International Conference on Work. Hydro-Physico-Mechanics Landfills (2009).
  • Muller ZO, others. Feed from animal wastes: state of knowledge. FAO Anim. Prod. Heal. Pap. (18) (1980).
  • Jordan SN, Mullen GJ, Murphy MC. Composition variability of spent mushroom compost in Ireland. Bioresour. Technol. 99, 411–418 (2008).
  • Kim EJ, Amezcua CM, Utterback PL, Parsons CM. Phosphorus bioavailability, true metabolizable energy, and amino acid digestibilities of high protein corn distillers dried grains and dehydrated corn germ. Poult. Sci. 87, 700–705 (2008).
  • Pasangulapati V, Ramachandriya KD, Kumar A, Wilkins MR, Jones CL, Huhnke RL. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresour. Technol. 114, 663–669 (2012).
  • Li L. Relationship between crystallinity index and enzymatic hydrolysis performance of celluloses separated from aquatic and terrestrial plant materials. 9, 3993–4005 (2014).
  • Cheng G, Varanasi P, Li C, et al. Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules [Internet]. 12(4), 933–41 (2011). Available from: http://www.ncbi.nlm.nih.gov/pubmed/21361369.
  • Wan ECH, Yu JZ. Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry. J. Chromatogr. A. 1107(1), 175–181 (2006).
  • Peng H, Li H, Luo H, Xu J. A novel combined pretreatment of ball milling and microwave irradiation for enhancing enzymatic hydrolysis of microcrystalline cellulose. Bioresour. Technol. 130, 81–87 (2013).
  • Kaplan JK. Biobased Industrial Products. Agric. Res. [Internet] . 50, 16 (2002). Available from: http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=6580353&site=ehost-live.
  • Zwolinski MD, Harris RF, Hickey WJ, et al. No title. Bioresour. Technol. [Internet] . 5(1), 1–11 (2013). Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=3574029&tool=pmcentrez&rendertype=abstract.
  • Toma M, Bandow H, Vinatoru M, Maeda Y. Ultrasonically assisted conversion of lignocellulosic biomass to ethanol. Proceedings of the AlChE Annual Meeting, San Francisco. CA, 12–17 November (2006).
  • Luo J, Fang Z, Smith RL. Ultrasound-enhanced conversion of biomass to biofuels. Prog. Energy Combust. Sci. [Internet] . 41, 56–93 (2014). Available from: http://linkinghub.elsevier.com/retrieve/pii/S036012851300052X.
  • Yachmenev V, Condon B, Klasson T, Lambert A. Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J. Biobased Mater. Bioenerg. 3, 25–31 (2009).
  • Nitayavardhana S, Shrestha P, Rasmussen ML, Lamsal BP, van Leeuwen J (Hans), Khanal SK. Ultrasound improved ethanol fermentation from cassava chips in cassava-based ethanol plants. Bioresour. Technol. 101, 2741–2747 (2010).
  • Velmurugan R, Muthukumar K. Sono-assisted enzymatic saccharification of sugarcane bagasse for bioethanol production. Biochem. Eng. J. 63, 1–9 (2012).
  • García A, Alriols MG, Llano-Ponte R, Labidi J. Ultrasound-assisted fractionation of the lignocellulosic material. Bioresour. Technol. 102, 6326–6330 (2011).
  • Sasmal S, Goud V, Mohanty K. Ultrasound assisted lime pretreatment of lignocellulosic biomass toward bioethanol production. Energ. Fuels 26(6), 3777–3784 (2012).
  • Sindhu R, Kuttiraja M, Elizabeth Preeti V, Vani S, Sukumaran RK, Binod P. A novel surfactant-assisted ultrasound pretreatment of sugarcane tops for improved enzymatic release of sugars. Bioresour. Technol. 135, 67–72 (2013).
  • Cobucci-Ponsano B, Ionata E, La Cara F. Extremophilic (Hemi) cellulolytic microorganisms and enzymes [Internet]. In: Lignocellulose Conversion, 111–130 (2013). Available from: http://link.springer.com/10.1007/
978-3-642-37861-4.
  • Hu Z, Wen Z. Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem. Eng. J. 38, 369–378 (2008).
  • Weil JR, Dien B, Bothast R, Hendrickson R, Mosier NS, Ladisch MR. Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents. Ind. Eng. Chem. Res. [Internet] . 41, 6132–6138 (2002). Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-2242426285&partnerID=40&md5=b851c077b38e44ca2e11fe62371f7f95.
  • Bals B, Rogers C, Jin M, Balan V, Dale B. Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol. Biofuel. 3, 1 (2010).
  • Krishnan C, da Costa Sousa L, Jin M, Chang L, Dale BE, Balan V. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol. Bioeng. 107, 441–450 (2010).
  • Balan V, Bals B, Chundawat SPS, Marshall D, Dale BE. Lignocellulosic biomass pretreatment using AFEX. Methods Mol. Biol. 581, 61–77 (2009).
  • Soccol CR, Vandenberghe LP de S, Medeiros ABP, et al. Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresour. Technol. 101, 4820–4825 (2010).
  • Öhgren K, Vehmaanperä J, Siika-Aho M, Galbe M, Viikari L, Zacchi G. High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzyme Microb. Technol. 40, 607–613 (2007).
  • Heitz M, Carrasco F, Rubio M, Brown A, Chornet E, Overend RP. Physico-chemical characterization of lignocellulosic substrates pretreated via autohydrolysis: an application to tropical woods. Biomass. 13, 255–273 (1987).
  • Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO. Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol. Prog. 17, 287–293 (2001).
  • Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005).
  • McMillan J. pretreatment of lignocellulosic biomass. Biotechnol. Adv. [Internet]. 30, 1447–57 (1994). Available from: http://www.ncbi.nlm.nih.gov/pubmed/23899571.
  • Saha BC, Iten LB, Cotta MA, Wu YV. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40, 3693–3700 (2005).
  • Ximenes E, Kim Y, Ladisch MR. Biological conversion of plants to fuels and chemicals and the effects of inhibitors. In: C.E. Wyman (Ed), Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, John Wiley & Sons, Chichester, UK, 39–60 (2013).
  • Jung YH, Kim IJ, Kim HK, Kim KH. Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresour. Technol. 132, 109–114 (2013).
  • Malik A. Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ. Int. 33, 122–138 (2007).
  • Nigam JN. Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol. [Internet] . 97(2), 107–16 (2002). Available from: http://www.ncbi.nlm.nih.gov/pubmed/12067517.
  • Abraham M, Kurup GM. Bioconversion of tapioca (Manihot esculenta) waste and water hyacinth (Eichhornia crassipes)—Influence of various physico-chemical factors. J. Ferment. Bioeng. 82(3), 259–263 (1996).
  • Isarankura-na-ayudhya C, Tantimongcolwat T. Original article : appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol : future prospects for community strengthening and sustainable development. EXCLI J. 6, 167–176 (2007).
  • Harmsen P, Gosselink R, Mulder W, Yilmaz G, Bakker R. Biorefinery: key for a successful biobased bioeconomy. Symp. Biorefinery Food, Fuel Mater. 2013. (2013).
  • Wettstein P, Vos J de. net energy balance of ethanol production from wood. Proceedings of the fourth International Symposium on Alcohol Fuels Technology, Guaruja-SP-Brasil, 5-8 October 1980. (1980).
  • Iglesias G, Bao M, Lamas J, Vega A. Soda pulping of Miscanthus sinensis. Effects of operational variables on pulp yield and lignin solubilization. Bioresour. Technol. 58, 17–23 (1996).
  • Fan L, Lee YH, Gharpuray M. The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis [Internet]. In: Microbial Reactions. Springer, 157–187 (1982). Available from: http://www.springerlink.com/index/yr8375162445675j.pdf.
  • Fengel D, Wegener G. Wood: chemistry, ultrastructure, reactions.
  • Mussatto S, Teixeira J. Lignocellulose as raw material in fermentation processes. Appl. Microbiol. Microb. Biotechnol. [Internet] . 2, 897–907 (2010). Available from: http://repositorium.sdum.uminho.pt/handle/1822/16762\n www.formatex.
info.
  • Kumar S, Singh SP, Mishra IM, Adhikari DK. Recent advances in production of bioethanol from lignocellulosic biomass. Chem. Eng. Technol. 32, 517–526 (2009).
  • Kim S, Holtzapple MT. Delignification kinetics of corn stover in lime pretreatment. Bioresour. Technol. 97, 778–785 (2006).
  • Chang VS, Nagwani M, Kim CH, Holtzapple MT. Oxidative lime pretreatment of high-lignin biomass: poplar wood and newspaper. Appl. Biochem. Biotechnol. 94, 1–28 (2001).
  • Grabber JH, Ralph J, Hatfield RD. Model studies of ferulate – Coniferyl alcohol cross-product formation in primary maize walls: Implications for lignification in 
grasses. J. Agric. Food Chem. 50, 6008–6016 (2002).
  • Xie G, Peng L. Genetic engineering of energy crops: a strategy for biofuel production in China. J. Integr. Plant Biol. [Internet]. 53(2), 143–50 (2011). Available from: http://www.ncbi.nlm.nih.gov/pubmed/21205188.
  • Harmsen P, Huijgen W, Bermudez L, Bakker R. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen UR, Food & Biobased Research.
  • Avgerinos E, Billa E, Papatheofanous M, Koullas D, Koukios E. Developing molecular strategies for fractionation, delignification and characterisation of plant fibres. Comptes Rendus - Biol. 327, 927–933 (2004).
  • Zhao H, Baker GA, Cowins JV. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Biotechnol. Prog. [Internet]. 26(1), 127–33 (2009). Available from: http://www.ncbi.nlm.nih.gov/pubmed/19918908.
  • McDonough T. The chemistry of organosolv delignification [Internet]. Available from: http://smartech.gatech.edu/handle/1853/2069.
  • Kootstra MJ, Beeftink HH, Scott EL, Sanders JPM. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem. Eng. J. [Internet]. 46(2), 126–131. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1369703×09001405 (2009).
  • Earle MJ, Seddon KR. Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72, 1391–1398 (2000).
  • Binder JB, Raines RT. Fermentable sugars by chemical hydrolysis of biomass. Proc. Natl. Acad. Sci. USA 107, 4516–4521 (2010).
  • Li C, Zhang Z, Zhao ZK. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural 
in ionic liquid under microwave irradiation. Tetrahedron Lett. 50, 5403–5405 (2009).
  • Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem. 9, 63 (2007).
  • Liu L, Chen H. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM] Cl. Chinese Sci. Bull. 51, 2432–2436 (2006).
  • Dadi AP, Varanasi S, Schall CA. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904–910 (2006).
  • Kuo CH, Lee CK. Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr. Polym. 77(1), 41–46 (2009).
  • Nguyen TAD, Kim KR, Han SJ, et al. Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour. Technol. 101, 7432–7438 (2010).
  • Klinke HB, Olsson L, Thomsen AB, Ahring BK. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnol. Bioeng. [Internet]. 81(6), 738–747. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12529889 (2003).
  • Rogers RD, Seddon KR. Chemistry. Ionic liquids – solvents of the future? Science. 302, 792–793 (2003).
  • Kamiya N, Matsushita Y, Hanaki M, et al. Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media. Biotechnol. Lett. 30, 1037–1040 (2008).
  • Li C, Knierim B, Manisseri C, et al. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101, 4900–4906 (2010).
  • Da Silva ASA, Inoue H, Endo T, Yano S, Bon EPS. Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour. Technol. 101, 7402–7409 (2010).
  • Cardona CA, Sánchez OJ. Fuel ethanol production: process design trends and integration opportunities. Bioresour. Technol. 98, 2415–2457 (2007).
  • Shi J, Chinn MS, Sharma-Shivappa RR. Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour. Technol. [Internet]. 99(14), 6556–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18242083 (2008).
  • Arantes V, Jellison J, Goodell B. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl. Microbiol. Biotechnol. 94, 323–338 (2012).
  • Ray MJ, Leak DJ, Spanu PD, Murphy RJ. Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass Bioenerg. 34(8), 1257–1262 (2010).
  • Wong DWS. Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol. 157, 174–209 (2009).
  • Blanchette RA. Degradation of the lignocellulose complex in wood. Can. J. Bot. 73, 999–1010 (1995).
  • Washington ASMP, Benneti KG, Faison BD. Use of Fungi Biodegradation. In: Environmental Microbiology, 960–970 (2002).
  • Rabinovich ML, Bolobova A V., Vasil'chenko LG. Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl. Biochem. Microbiol. 40, 1–17 (2004).
  • Zeng Y, Yang X, Yu H, Zhang X, Ma F. Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi. J. Agric. Food Chem. 59, 9965–9971 (2011).
  • Novotný ČCˇ , Cajthaml T, Svobodová K, Šušla M, Šašek V. Irpex lacteus, a white-rot fungus with biotechnological potential – review. Folia Microbiol. (Praha). 54, 375–390 (2009).
  • Li Q, He YC, Xian M, et al. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour. Technol. 100, 3570–3575 (2009).
  • Wang FQ, Xie H, Chen W, Wang ET, Du FG, Song AD. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis. Bioresour. Technol. 144, 572–578 (2013).
  • Zhong W, Zhang Z, Qiao W, Fu P, Liu M. Comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion. Renew. Energ. 36, 1875–1879 (2011).
  • Pinto MS, Europe B, Markets WB. Global biofuels outlook 2010-2020.(2011).
  • Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez ÁT, Martínez MJ. Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour. Technol. 102, 7500–7506 (2011).
  • Salvachúa D, Prieto A, Vaquero ME, Martínez ÁT, Martínez MJ. Sugar recoveries from wheat straw following treatments with the fungus Irpex lacteus. Bioresour. Technol. 131, 218–225 (2013).
  • Ma H, Liu WW, Chen X, Wu YJ, Yu ZL. Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresour. Technol. 100, 1279–1284 (2009).
  • Potumarthi R, Baadhe RR, Nayak P, Jetty A. Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresour. Technol. 128, 113–117 (2013).
  • Keller FA, Hamilton JE, Nguyen QA. Microbial pretreatment of biomass: potential for reducing severity of thermochemical biomass pretreatment. Appl. Biochem. Biotechnol. 105–108, 27–41 (2003).
  • Bak JS, Ko JK, Choi IG, Park YC, Seo JH, Kim KH. Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol. Bioeng. 104, 471–482 (2009).
  • Saritha M, Arora A, Lata. Biological Pretreatment of Lignocellulosic Substrates for Enhanced Delignification and Enzymatic Digestibility. Indian J. Microbiol. 52, 122–130 (2012).
  • Crawford DL, Barder MJ, Pometto AL, Crawford RL. Chemistry of softwood lignin degradation by Streptomyces viridosporus. Arch. Microbiol. 131, 140–145 (1982).
  • Glenn JK, Gold MH. Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 45, 1741–1747 (1983).
  • Tien M, Kirk TK. Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science 221, 661–663 (1983).
  • Sawada T, Nakamura Y, Kobayashi F, Kuwahara M, Watanabe T. Effects of fungal pretreatment and steam explosion pretreatment on enzymatic saccharification of plant biomass. Biotechnol. Bioeng. 48, 719–724 (1995).
  • Vaidya A, Singh T. Pre-treatment of Pinus radiata substrates by basidiomycetes fungi to enhance enzymatic hydrolysis. Biotechnol. Lett. 34, 1263–1267 (2012).
  • Lomascolo A, Record E, Herpoël-Gimbert I, et al. Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer.
 J. Appl. Microbiol. 94, 618–624 (2003).
  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861 (2010).
  • Jönsson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B. Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl. Microbiol. Biotechnol. 49, 691–697 (1998).
  • Kim Y, Yu A, Han M, Choi GW, Chung B. Enhanced enzymatic saccharification of barley straw pretreated by ethanosolv technology. Appl. Biochem. Biotechnol. 163, 143–152 (2011).
  • Björklund L, Larsson S, Jönsson LJ, Reimann E, Nilvebrant N-O. Treatment with lignin residue: a novel method for detoxification of lignocellulose hydrolysates. Appl. Biochem. Biotechnol. 98–100, 563–575 (2002).
  • Petersson A, Almeida JRM, Modig T, et al. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23, 455–464 (2006).
  • Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 71, 339–349 (2006).
  • Hasunuma T, Kondo A. Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem. 47, 1287–1294 (2012).
  • Battista OA. Hydrolysis and crystallization of cellulose. Ind. Eng. Chem. 42(3), 502–507 (1950).
  • Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S. Bioethanol production: Feedstock and current technologies. J. Environ. Chem. Eng. 2(1), 573–584 (2014).
  • Jönsson LJ, Alriksson B, Nilvebrant N-O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels [Internet]. 6, 16 (2013). Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3574029&tool=pmcentrez&rendertype=abstract.
  • Alriksson B, Horváth IS, Sjöde A, Nilvebrant N-O, Jönsson LJ. Ammonium hydroxide detoxification of spruce acid hydrolysates. Appl. Biochem. Biotechnol. 121–124, 911–922 (2005).
  • Fenske JJ, Griffin DA, Penner MH. Comparison of aromatic monomers in lignocellulosic biomass prehydrolysates. J. Ind. Microbiol. Biotechnol. 20, 364–368 (1998).
  • Fenske JJ, Hashimoto A, Penner MH. Relative fermentability of lignocellulosic diluteacid prehydrolysates. Appl. Biochem. Biotechnol. 73, 145–157 (1998).
  • Guo P, Wang X, Zhu W, Yang H, Cheng X, Cui Z. Degradation of corn stalk by the composite microbial system of MC1.
 J. Environ. Sci. 20, 109–114 (2008).
  • Tran A V, Chambers RP. Red oak wood derived inhibitors in the ethanol fermentation of xylose by Pichia stipitis.pdf. Biotechnol. Lett. 7, 841–846 (1985).
  • Tran AV, Chambers RP. Ethanol fermentation of red oak acid prehydrolysate by the yeast Pichia stipitis CBS 5776. Enzyme Microb. Technol. 8, 439–444 (1986).
  • Clark TA, Mackie KL. Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J. Chem. Technol. Biotechnol. 34B, 101–110 (1984).
  • Luo C, Brink DL, Blanch HW. Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenerg. 22, 125–138 (2002).
  • Larsson S, Reimann A, Nilvebrant N-O, Jönsson LJ. Comparison of Different Methods for the Detoxification of Lignocellulose Hydrolyzates of Spruce. Appl. Biochem. Biotechnol. 77, 91–104 (1999).
  • Persson P, Larsson S, Jönsson LJ, et al. Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol. Bioeng. 79, 694–700 (2002).
  • Martín C, Galbe M, Wahlbom CF, Hahn-Hägerdal B, Jönsson LJ. Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb. Technol. 31, 274–282 (2002).
  • Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH. Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour. Technol. 59, 129–136 (1997).
  • Andrić P, Meyer AS, Jensen PA, Dam-Johansen K. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol. Adv. 28, 308–324 (2010).
  • Podkaminer KK, Shao X, Hogsett DA, Lynd LR. Enzyme inactivation by ethanol and development of a kinetic model for thermophilic simultaneous saccharification and fermentation at 50??C with Thermoanaerobacterium saccharolyticum ALK2. Biotechnol. Bioeng. 108, 1268–1278 (2011).
  • Bezerra RMF, Dias AA. Enzymatic kinetic of cellulose hydrolysis. Appl. Biochem. Biotechnol. 126, 49–59 (2005).
  • Bisaria VS, Ghose TK. Biodegradation of cellulosic materials: Substrates, microorganisms, enzymes and products. Enzyme Microb. Technol. 3, 90–104 (1981).
  • Reese ET, Siu RG, Levinson HS. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59, 485–497 (1950).
  • Deshpande M V, Eriksson KE, Pettersson LG. An assay for selective determination of exo-1,4,-beta-glucanases in a mixture of cellulolytic enzymes. Anal. Biochem. 138, 481–487 (1984).
  • Tarantili PA, Koullas DP, Christakopoulos P, Kekos D, Koukios EG, Macris BJ. Cross-synergism in enzymatic hydrolysis of lignocellulosics: mathematical correlations according to a hyperbolic model. Biomass Bioenerg. 10, 213–219 (1996).
  • Ghose TK, Das K. A simplified kinetic approach to cellulose-cellulase system. In: Ghose, TK & Fiechter A (Eds), Advances in Biochemical Engineering, Volume 1. Berlin, Springer-Verlag, 55–76 (1971).
  • Ganesh K, Joshi JB, Sawant SB. Cellulase deactivation in a stirred reactor. Biochem. 
Eng. J. 4, 137–141 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.