272
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Liquid transport fuels from microbial yeasts – current and future perspectives

, , , , , , & show all

References

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science 319(5867), 1235–1238 (2008).
  • Ragauskas AJ, Williams CK, Davison BH et al. The path forward for biofuels and biomaterials. Science 311(5760), 484–489 (2006).
  • Escobar JC, Lora ES, Venturini OJ, Yanez EE, Castillo EF, Almazan O. Biofuels: environment, technology and food security. Renew. Sust. Energ. Rev. 13(6-7), 1275–1287 (2009).
  • Sugita T, Takashima M. Yeasts, a taxonomic study. Jpn J. Med. Mycol. 52(2), 107–115 (2011).
  • Lachance MA. Yeast biodiversity: how many and how much? In: Biodiversity and Ecophysiology of Yeasts, Péter G, Rosa C (Eds). Springer, Berlin, Heidelberg, 1–9 (2006).
  • Bolotin-Fukuhara M. Genomics and biodiversity in yeasts. In: Biodiversity and Ecophysiology of Yeasts, Péter G, Rosa C (Eds). Springer, Berlin, Heidelberg, 45–66 (2006).
  • Viikari L, Vehmaanperä J, Koivula A. Lignocellulosic ethanol: from science to industry. Biomass Bioenerg. 46(0), 13–24 (2012).
  • Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur. J. Lipid Sci. Technol. 113(8), 1052–1073 (2011).

*Expansive review covering a wide variety of aspects including kinetic modelling, effects of culture conditions on lipid production and using yeast lipids as a substitute for high-value fats

  • Jenkins RW, Munro M, Nash S, Chuck CJ. Potential renewable oxygenated biofuels for the aviation and road transport sectors. Fuel 103, 593–599 (2013).
  • Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S. Synthetic biology and metabolic engineering approaches to produce biofuels. Chem. Rev., 113 (7), 4611–4632 (2013).

*Interesting and full overview of fuel molecules produced by microbes

  • Hammond GP, Seth SM. Carbon and environmental footprinting of global biofuel production. Appl. Energ. 112(0), 547–559 (2013).
  • US Department of Energy. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. Perlack RD and Stokes BJ (Leads), ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, TN. 227p (2011).
  • United States Department of Agriculture, Foreign Agricultural Service Office of Global Analysis. World Agricultural Production 9 (2013).
  • Chiaramonti D, Prussi M, Ferrero S et al. Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenerg. 46(0), 25–35 (2012).
  • Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ. Convers. Manage. 52(2), 858–875 (2011).
  • da Costa Sousa L, Chundawat SPS, Balan V, Dale BE. ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr. Opin. Biotech. 20(3), 339–347 (2009).
  • Galbe M, Zacchi G. Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenerg. 46(0), 70–78 (2012).
  • Chandel A, Silva S, Singh O. Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. Bioenerg. Res., 6(1), 388–401 (2013).
  • Corrêa Do Lago A, Bonomi A, Cavalett O, Pereira Da Cunha M, Pinheiro Lima MA. Sugarcane as a carbon source: the Brazilian case. Biomass Bioenerg. 46(0), 5–12 (2012).
  • Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energ. 86(11), 2273–2282 (2009).
  • Humbird D, Davis R, Tao L et al. Process design and economics for conversion of lignocellulosic biomass to ethanol. NREL Technical Report NREL/TP-5100-47764 303, 1–147 (2011).
  • Van Keulen H, Lindmark DG, Zeman KE, Gerlosky W. Yeasts present during spontaneous fermentation of Lake Erie Chardonnay, Pinot Gris and Riesling. Antonie Leeuw. Int. J. G. 83(2), 149–154 (2003).
  • Walker GM, Birch RM, Chandrasena G, Maynard AI. Magnesium, calcium, and fermentative metabolism in industrial yeasts. J. Am. Soc. Brew. Chem. 54(1), 13–18 (1996).
  • Hirasawa T, Yoshikawa K, Nakakura Y et al. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J. Biotech. 131(1), 34–44 (2007).
  • Sharma SC. A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. Fems Microb.Lett. 152(1), 11–15 (1997).
  • You KM, Rosenfield CL, Knipple DC. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl. Environ. Microb. 69(3), 1499–1503 (2003).
  • Peralta-Yahya PP, Zhang F, Del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature 488(7411), 320–328 (2012).
  • Saxena RC, Adhikari DK, Goyal HB. Biomass-based energy fuel through biochemical routes: A review. Renew. Sust. Energ. Rev. 13(1), 167–178 (2009).
  • Quintero JA, Rincon LE, Cardona CA. Production of bioethanol from agroindustrial residues as feedstocks. In: Biofuels: Alternative Feedstocks and Conversion Processes. Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E. (Eds), (Academic Press, Amsterdam, (2011)
  • El-Enshasy H, Thongchul N, Yang S-T. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers (1). John Wiley and Sons, Hoboken, New Jersey, 488 (2013).
  • Cardona CA, Sanchez OJ. Fuel ethanol production: process design trends and integration opportunities. Bioresource Technol. 98(12), 2415–2457 (2007).
  • Clomburg JM, Gonzalez R. Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl. Microbiol. Biot. 86(2), 419–434 (2010).
  • Hong K-K, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 69(16), 2671–2690 (2012).

**Useful as it is focused only on yeast, and on the basic strategies that will need to be addressed to produce future fuels

  • Porro D, Gasser B, Fossati T et al. Production of recombinant proteins and metabolites in yeasts. Appl. Microbiol. Biot. 89(4), 939–948 (2011).
  • De Jong B, Siewers V, Nielsen J. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr. Opin. Biotech. 23(4), 624–630 (2012).
  • Leber C, Da Silva NA. Development of Saccharomyces cerevisiae strains for the synthesis of short chain fatty acids. Abstr. Pap. Am. Chem. Soc. 243(1) (2012).
  • Steen EJ, Chan R, Prasad N et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. 7 (2008).
  • Buijs NA, Siewers V, Nielsen J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 17(3), 480–488 (2013).
  • Avalos JL, Fink GR, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31(4), 335 (2013).

**Offers a unique strategy that can be applied to the metabolic engineering of any yeast, for multiple pathways, to enhance productivity

  • Hornby JM, Kebaara BW, Nickerson KW. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob. Agents Ch. 47(7), 2366–2369 (2003).
  • Tamakawa H, Mita T, Yokoyama A, Ikushima S, Yoshida S. Metabolic engineering of Candida utilis for isopropanol production. Appl. Microbiol. Biotech. 97(14), 6231–6239 (2013).
  • Fuganti C, Serra S. Baker's yeast-mediated enantioselective synthesis of the bisabolane sesquiterpenes (+)-curcuphenol, (+)-xanthorrhizol, (-)-curcuquinone and (+)-curcuhydroquinone. J. Chem. Soc. Perkin Trans. 1(22), 3758–3764 (2000).
  • Zhang F, Rodriguez S, Keasling JD. Metabolic engineering of microbial pathways for advanced biofuels production. Curr. Opin. Biotech. 22(6), 775–783 (2011).
  • Hong SY, Zurbriggen AS, Melis A. Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. J. Appl. Microb. 113(1), 52–65 (2012).
  • Branduardi P, Longo V, Berterame NM, Rossi G, Porro D. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol. Biofuel. 6(1), 68 (2013).
  • Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J. Biotechnol. 159, 32–37 (2012).
  • Atsumi S, Hanai T, Liao J. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008).
  • Steen EJ, Kang Y, Bokinsky G et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280), 559–U182 (2010).
  • Bouvier-Nave P, Benveniste P, Oelkers P, Sturley SL, Schaller H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA: diacylglycerol acyltransferase. Eur. J. Biochem. 267(1), 85–96 (2000).
  • Courchesne NMD, Parisien A, Wang B, Lan CQ. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol. 141(1-2), 31–41 (2009).
  • Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. In: Advances in Applied Microbiology, 51, Laskin AI, Bennett JW, Gadd GM (Eds), Elsevier Academic Press, San Diego, USA (2002).
  • Wynn JP, Hamid ABA, Ratledge C. The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiol.-UK 145, 1911–1917 (1999).
  • Picataggio S, Rohrer T, Deanda K et al.. Metabolic engineering of Candida tropicalis for the production of long chain dicarboxylic acids. Bio-Technol. 10(8), 894–898 (1992).
  • Cao Z, Gao H, Liu M, Jiao P. Engineering the acetyl-CoA transportation system of candida tropicalis enhances the production of dicarboxylic acid. Biotechnol. J. 1(1), 68–74 (2006).
  • Jiang P, Cronan JE. Inhibition of fatty acid synthesis in E. coli in the absence of phopholipid-synthesis and release of inhibition by thioesterase action. J. Bacteriol. 176(10), 2814–2821 (1994).
  • Chen J, Lang C, Hu Z, Liu Z, Huang R. Antisense PEP gene regulates to ratio of protein and lipid content in Brassica napus seeds. J. Agr. Biotechnol. 7(4), 316–320 (1999).
  • Song D, Fu J, Shi D. Exploitation of Oil-bearing Microalgae for Biodiesel. Chinese J. Biotechnol. 24(3), 341–348 (2008).
  • Ladygina N, Dedyukhina EG, Vainshtein MB. A review on microbial synthesis of hydrocarbons. Process Biochem. 41(5), 1001–1014 (2006).
  • Wriessnegger T, Pichler H. Yeast metabolic engineering - Targeting sterol metabolism and terpenoid formation. Prog. Lipid Res. 52(3), 277–293 (2013).

**A full comprehensive study into the metabolism of sterols and terpenoids. As such, it is core reading in the production of hydrocarbon fuels from yeasts.

  • Ro DK, Paradise EM, Ouellet M et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086), 940–943 (2006).
  • Green S, Squire CJ, Nieuwenhuizen NJ, Baker EN, Laing W. Defining the Potassium Binding Region in an Apple Terpene Synthase. J. Biol. Chem. 284(13), 8652–8660 (2009).
  • Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnol. 21(7), 796–802 (2003).
  • Ignea C, Cvetkovic I, Loupassaki S et al. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microbial Cell Fact. 10, (2011).
  • Amore R, Kotter P, Kuster C, Ciriacy M, Hollenberg CP. Cloning and expression in Saccharomyces cerevisie of the NAD(P)H dependent xylose reductase-encoding gene (XYL1) from the xylose assimilating yeast Pichia Stipitus. Gene 109(1), 89–97 (1991).
  • Walfridsson M, Bao XM, Anderlund M, Lilius G, Bulow L, Hahnhagerdal B. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Envir. Microb. 62(12), 4648–4651 (1996).
  • Lonn A, Traff-Bjerre KL, Otero RRC, Van Zyl WH, Hahn-Hagerdal B. Xylose isomerase. Activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus. Enzyme Microb. Tech. 32(5), 567–573 (2003).
  • Kim SR, Park Y-C, Jin Y-S, Seo J-H. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 31(6), 851–861 (2013).
  • Olofsson K, Runquist D, Hahn-Hagerdal B, Liden G. A mutated xylose reductase increases bioethanol production more than a glucose/xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw. AMB Express 1(1), 4–4 (2011).
  • Hahn-Haegerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem Eng Biotechnol.108, 147–177 (2007).
  • Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem. J. 385, 75–83 (2005).
  • Chiang C, Knight SG. L-arabinose metabolism by cell-free extracts of Penicllium chrysogenum. Biochim. Biophys. Acta 46(2), 271 (1961).
  • Witteveen CFB, Busink R, Vandevondervoort P, Dijkema C, Swart K, Visser J. L-arabinose and D-xylose catabolism in Aspergillus niger. J. Gen. Microb. 135, 2163–2171 (1989).
  • Richard P, Verho R, Putkonen M, Londesborough J, Penttila M. Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. Fems Yeast Res. 3(2), 185–189 (2003).
  • Karhumaa K, Wiedemann B, Hahn-Hagerdal B, Boles E, Gorwa-Grauslund MF. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microbial Cell Fact. 5, (2006).
  • Wisselink HW, Toirkens MJ, Berriel MDRF et al. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl. Envir. Microb. 73(15), 4881–4891 (2007).
  • Fellows PJ, Worgan JT. Studies on the growth of Candida utilis on D-galacturonic acid and the products of pectin hydrolysis. Enzyme Microb. Tech. 8(9), 537–540 (1986).
  • Fredlund E, Blank LM, Schnurer J, Sauer U, Passoth V. Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Appl. Envir. Microb. 70(10), 5905–5911 (2004).
  • Van Maris AJA, Abbott DA, Bellissimi E et al. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Leeuw. Int. J. G. 90(4), 391–418 (2006).

**Comprehensive article, with in-depth consideration, into the redox biochemistry that takes place using different inhibitors and substrates

  • Liu ZL, Slininger PJ, Gorsich SW. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl. Biochem. Biotech. 121, 451–460 (2005).
  • Nilsson A, Gorwa-Grauslund MF, Hahn-Hagerdal B, Liden G. Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl. Environ. Microb. 71(12), 7866–7871 (2005).
  • Larsson S, Cassland P, Jonsson LJ. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl. Environ. Microb. 67(3), 1163–1170 (2001).
  • Larsson S, Nilvebrant NO, Jonsson LJ. Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Appl. Microb. Biotech. 57(1-2), 167–174 (2001).
  • Chen X, Li Z, Zhang X, Hu F, Ryu DDY, Bao J. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl. Biochem. Biotech. 159(3), 591–604 (2009).
  • Zhang G, French WT, Hernandez R, Alley E, Paraschivescu M. Effects of furfural and acetic acid on growth and lipid production from glucose and xylose by Rhodotorula glutinis. Biomass Bioenerg. 35(1), 734–740 (2011).
  • Knothe G, Krahl J, Van Gerpen JH. The Biodiesel Handbook. AOCS Press, Boulder, Urbana, Il, (2010).
  • Knothe G. Biodiesel: Current Trends and Properties. Top. Catal. 53(11-12), 714–720 (2010).
  • Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sust. Energ. Rev. 16(4), 2070–2093 (2012).
  • Ratledge C. Resources conservation by novel biological processes. 1 Grow fats from wastes. Chem. Soc. Rev. 8(2), 283–296 (1979).
  • Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur. J. Lipid Sci. Technol. 113(8), 1031–1051 (2011).
  • Borowitska MA. Microalgal Biotechnology. Cambridge University Press, Cambridge, UK, 477 (1988).
  • Subramaniam R, Dufreche S, Zappi M, Bajpai R. Microbial lipids from renewable resources: production and characterization. J. Ind. Microbiol. Biot. 37(12), 1271–1287 (2010).
  • Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biot. 80(5), 749–756 (2008).
  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294–306 (2007).
  • Chisti Y, Yan JY. Energy from algae: current status and future trends Algal biofuels – a status report. Appl. Energ. 88(10), 3277–3279 (2011).
  • Singh N, Dhar D. Microalgae as second generation biofuel. A review. Agron. Sust. Develop. 31(4), 605–629 (2011).
  • Chisti Y. Constraints to commercialization of algal fuels. J. Biotechnol. 167(3), 201–214 (2013).
  • Klein-Marcuschamer D, Chisti Y, Benemann JR, Lewis D. A matter of detail: assessing the true potential of microalgal biofuels. Biotechnol. Bioeng. 110(9), 2317–2322 (2013).
  • Ríos SD, Castañeda J, Torras C, Farriol X, Salvadó J. Lipid extraction methods from microalgal biomass harvested by two different paths: screening studies toward biodiesel production. Biores. Technol. 133(0), 378–388 (2013).
  • Lee AK, Lewis DM, Ashman PJ. Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass Bioenerg. 46(0), 89–101 (2012).
  • Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol. Adv. 30(3), 709–732 (2012).
  • Brennan L, Owende P. Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev. 14(2), 557–577 (2010).
  • Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG. Oily yeasts as oleaginous cell factories. Appl. Microbiol. Biot. 90(4), 1219–1227 (2011).
  • Saharan BS, Sahu RK, Sharma D. A review on biosurfactants: fermentation, current developments and perspectives. Genet. Eng. Biotechnol. J. 1–14 (2012).
  • Marchant R, Banat IM. Microbial biosurfactants: Challenges and opportunities for future exploitation. Trends Biotechnol. 30(11), 558–565 (2012).
  • Marchant R, Banat IM. Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol. Lett. 34(9), 1597–1605 (2012).
  • Bs Saharan RSaDS. A review on biosurfactants: fermentation, current developments and perspectives. Genet. Eng. Biotechnol. J. 2011, 1 (2012).
  • Ward OP, Singh A. Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 40(12), 3627–3652 (2005).
  • Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I. Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr. Microbiol. 46(2), 124–130 (2003).
  • Eroshin VK, Krylova NI. efficiency of lipid synthesis by yeasts. Biotechnol. Bioeng. 25(7), 1693–1700 (1983).
  • Kitcha S, Cheirsilp B. Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. In: 9th Eco-Energy and Materials Science and Engineering Symposium, Yupapin PP, Pivsaart S, Ohgaki H (Eds) (2011).
  • Rattray JBM. Yeasts. In: Microbial Lipids, Ratledge C, Wilkinson SG (Eds), Academic Press, London, 1 (1988).
  • Amaretti A, Raimondi S, Sala M et al. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microbial Cell Fact. 9, (2010).
  • Hansson L, Dostalek M. Effect of culture conditions on fatty acid composition in lipids produced by the yeast Cryptococcus albidus. J. Am. Oil Chem. Soc. 63(9), 1179–1184 (1986).
  • Husain SS, Hardin MM. Influence of carbohydrate and nitrogen sources upon lipid production by certain yeasts. Food Res. 17(1), 60–66 (1952).
  • Pedersen TA. Lipid formation in Cryptococcus terricolus .1. Nitrogen nutrition and lipid formation. Acta Chem. Scand. 15(3), 651 (1961).
  • Sitepu IR, Ignatia L, Franz AK et al. An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J. Microbiol. Meth. 91(2), 321–328 (2012).
  • Hu C. Wu S. Wang Q. Jin G. Shen H. Zhao ZK. Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnol. Biofuels 4(25) (2011).
  • Ratledge C. Biochemistry, stoichiometry, substrates and economics. In Single Cell Oil, Moreton RS (Ed.), Longman Scientific & Technical, London, 33–70 (1988).
  • Ratledge C, Cohen Z. Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol. 20(7), 155–160 (2008).
  • Zhao X, Hu C, Wu S, Shen H, Zhao Z. Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. J. Ind. Microbiol. Biot. 38(5), 627–632 (2011).
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev. 14(1), 217–232 (2010).
  • Guedes AC, Amaro HM, Malcata FX. Microalgae as sources of high added-value compounds-a brief review of recent work. Biotechnol. Progr. 27(3), 597–613 (2011).
  • Bligh EG, Dyer WJ. A rapid method of total lipids extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959).
  • Patil PD, Gude VG, Mannarswamy A et al. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Biores. Technol. 102(2), 1399–1405 (2011).
  • Kaufmann B, Christen P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Analysis 13(2), 105–113 (2002).
  • Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M. Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technol. 101, S75–S77 (2010).
  • Moreau RA, Scott KM, Haas MJ. The identification and quantification of steryl glucosides in precipitates from commercial biodiesel. J. Am. Oil Chem. Soc. 85(8), 761–770 (2008).
  • Van Hoed V, Zyaykina N, De Greyt W, Maes J, Verhe R, Demeestere K. Identification and occurrence of steryl glucosides in palm and soy biodiesel. J. Am. Oil Chem. Soc. 85(8), 701–709 (2008).
  • Santomauro F, Whiffin FM, Scott RJ, Chuck CJ. Low-cost lipid production by oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol. Biofuels, 7, 34–44 (2013).
  • Knothe G. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform? Green Chem. 13(11), 3048–3065 (2011).
  • Schroder O, Bunger J, Munack A, Knothe G, Krahl J. Exhaust emissions and mutagenic effects of diesel fuel, biodiesel and biodiesel blends. Fuel 103, 414–420 (2013).
  • Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 86(10), 1059–1070 (2005).
  • Knothe G. “Designer” biodiesel: Optimizing fatty ester (composition to improve fuel properties. Energ. Fuel. 22(2), 1358–1364 (2008).
  • Schonborn A, Ladommatos N, Williams J, Allan R, Rogerson J. The influence of molecular structure of fatty acid monoalkyl esters on diesel combustion. Combust. Flame 156(7), 1396–1412 (2009).
  • Williams PJLB, Laurens LML. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energ. Environ. Sci. 3(5), 554–590 (2010).
  • Sargeant LA, Chuck CJ, Donnelly J, Bannister CD, Scott RJ. Optimising the lipid profile, to produce either a palm oil or biodiesel substitute, by manipulation of the culture conditions for Rhodotorula glutinis. Biofuels 5(1), 33–43 (2014).
  • Wahlen BD, Morgan MR, Mccurdy AT et al. Biodiesel from microalgae, yeast, and bacteria: engine performance and exhaust emissions. Energ. Fuel. 27(1), 220–228 (2013).
  • Ratledge C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 86(11), 807–815 (2004).
  • Ratledge C. Biochemistry, stoichiometry, substrates and economics. In: Single Cell Oil, Moreton RS (Ed.), Longman Scientific & Technical, London, 33–70 (1988).
  • Braunwald T, Schwemmlein L, Graeff-Honninger S et al. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl. Microbiol. Biot. 97(14), 6581–6588 (2013).
  • Wu S, Zhao X, Shen H, Wang Q, Zhao ZK. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresource Technol. 102(2), 1803–1807 (2011).
  • Wu S, Hu C, Jin G, Zhao X, Zhao ZK. Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresource Technol. 101(15), 6124–6129 (2010).
  • Huang C, Wu H, Liu Z-J, Cai J, Lou W-Y, Zong M-H. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. Biotechnol. Biofuel. 5 (2012).
  • Suutari M, Liukkonen K, Laakso S. Temperature adaptation in yeasts: the role of fatty acids. J. Gen. Microbiol. 136, 1469–1474 (1990).
  • Wu S, Hu C, Zhao X, Zhao ZK. Production of lipid from N-acetylglucosamine by Cryptococcus curvatus. Eur. J. Lipid Sci. Technol. 112(7), 727–733 (2010).
  • Bellou S, Moustogianni A, Makri A, Aggelis G. Lipids containing polyunsaturated fatty acids synthesized by zygomycetes grown on glycerol. Appl. Biochem. Biot. 166(1), 146–158 (2012).
  • Granger LM, Perlot P, Goma G, Pareilleux A. Kinetics of growth and faty acid production of Rhodotorula glutinis. Appl. Microbiol. Biot. 37(1), 13–17 (1992).
  • Ferrante G, Kates M. Pathways for desaturation of oleoyl chains in Candida lipolytica. Can. J. Bioch. Cell Biol. 61(11), 1191–1196 (1983).
  • Veriansyah B, Han JY, Kim SK et al. Production of renewable diesel by hydroprocessing of soybean oil: effect of catalysts. Fuel 94(1), 578–585 (2012).
  • Snare M, Kubickova I, Maki-Arvela P, Eranen K, Murzin DY. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind. Engineer. Chem. Res. 45(16), 5708–5715 (2006).
  • Deldari H. Suitable catalysts for hydroisomerization of long-chain normal paraffins. Appl. Catal. A-Gen. 293, 1–10 (2005).

Websites

Patents

  • Abhari R, Tomlinson L, Havlik P, Jannasch N. WO2008124607 (2008)
  • Marker TL, Kokayeff P, Abdo SF, Baldiraghi F, Sabatino LMF. US2009193709 (2009)
  • Myllyoja J, Aalto P, Savolainen P, Purola V-M, Alopaeus V, Groenqvist J. US2011282116 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.