101
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Conversion steps in bioenergy production – analysis of the energy flow from photon to biofuel

, &

References

  • Bolton R, Hall DO. The maximum efficiency of photosynthesis. Photochem. Photobiol. 53, 545–548 (1991).
  • Larkum AWD. Limitations and prospects of natural photosynthesis for bioenergy production. Curr. Opin. Biotechn. 21, 271–276. (2010).
  • Kaltschmitt M, Hartmann H, Hofbauer H. Energie aus Biomasse: Grundlagen, Techniken und Verfahren. Springer, Berlin (2009).
  • Scheer H. Structure and occurrence of chlorophylls. In: Chlorophylls. Scheer H (Ed.): CRC Press, Boca Raton (1991).
  • Van Grondelle R, Dekker JP, Gilbro T, Sundström V. Energy transfer and trapping in photosynthesis. Biochim, Biophys. Acta. 1187, 1–65 (1994).
  • Holzwarth A. Die Primären Prozesse der Photosynthese. In: Photosynthese. Häder DP (Ed.): Thieme Verlag, (1999).
  • Merzlyak MN, Chivkunova OB, Zhigalova TV, Naqvi KR. Light absorption by isolated chloroplasts and leafs: effects of scattering and “packing.” Photosynth. Res. 102, 31–41 (2009).
  • Rühle W, Wild A. Die Anpassung des Photosyntheseapparates höherer Pflanzen an die Lichtbedingungen. Naturwissenschaften 72, 14–19 (1985)
  • Wilhelm C, Selmar D. Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J. Plant Physiol. 168, 79–87 (2011).
  • Goss R, Jakob T. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth. Res. 106, 103–122 (2011).
  • Stitt M, Schulze D. Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environm. 17, 465–487 (1994).
  • *Peterhänsel C et al. Engineering photorespiration: current state and future possibilities. Plant Biol. 15, 754–758 (2013).
  • Grayston SJ, Vaughn D, Jones D. Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol. 5, 29–56 (1997).
  • Brenchley R. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705–710 (2012).
  • Wilhelm C, Jakob T. Uphill energy transfer from long-wavelength absorbing chlorophylls to PSII in Ostreobium sp. is functional in carbon assimilation. Photosynth. Res. 87, 323–329 (2006).
  • Fletcher AL, Johnstone PR, Chakwizira E,▒Brown HE. Radiation capture and radiation use efficiency in response to N supply for crop species with contrasting canopies. Field Crops Res. 150, 126–134 (2013).
  • Murchie EH, Pinto M, Horton P, Agriculture and the new challenge for photosynthesis research. New Phytol. Transley Rev. 181, 532–552 (2009).
  • Yabuta Y,▒Tamoi M,▒Yamamoto K,▒Tomizawa K-I,▒Yokota A,▒Shigeoka S. Molecular design of photosynthesis-elevated chloroplasts for mass accumulation of a foreign protein. Plant Cell Physiol. 49, 375–385 (2008).
  • Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–371 (2005). 19
  • Kajala K et al. Strategies for engineering a two-celled C4 photosynthesis pathway into rice. J. Exp. Bot. 62, 3001–3010 (2011).
  • Miyao M, Masumoto C, Miyazawa SI, Fukayama H. Lessons learnt from engineering a single-cell C4 photosynthetic pathway into rice. J. Exp. Bot. 62, 3021–3029 (2011).
  • Price GD, Badger MR, von Caemmerer S, The prospect of using cyanobacterial bicarbonate transporter to improve leaf photosynthesis in C3 crop plants. Plant Physiol. 155, 20–26 (2011).
  • Reynolds MP, Hellin J, Govaerts B et al. Global crop improvement networks to bridge technology gaps. J. Exp. Bot. 63, 1–12 (2012).
  • Slafer GA, Kantolic AG, Appendino ML, Miralles DJ, Savin R. Crop development: genetic control, environmental modulation, and relevance for genetic improvement of crop yield. In: Crop Physiology: Applications for Genetic Improvement and Agronomy. Sadras EV, Calderini DF (Eds). Elsevier, the Netherlands, 277–308 (2009).
  • Hays DB, Do JH, Mason RE, Morgan G, Finlayson SE. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci. 172, 1113–1123 (2007).
  • Calderini D, Dreccer M, Slafer G. Consequences of breeding on biomass, radiation interception and radiation-use efficiency in wheat. Field Crops Res. 52, 271–281 (1997).
  • Voznesenskaya EV,▒Koteyeva NK,▒Akhani H,▒Roalson EH, Edwards GE. Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis. J. Exp. Bot. 64, 3583–3604 (2013).
  • Schnabele P et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).
  • Jing J, Zhang F, Rengel Z, Shen J. Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake. Field Crops Res. 133, 176–185 (2012).
  • Evans JR, Improving photosynthesis. Plant Physiol. 162, 1780–1793 (2013).
  • Semagn K et al. Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genom. 14, 313–329 (2013).
  • Chisti Y, Biodiesel from microalgae. Biol. Adv. 25, 294–306 (2007).
  • Wagner H, Jakob T, Wilhelm C. Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol. 169, 95–108 (2005).
  • Langner U, Jakob T, Stehfest K, Wilhelm C. A complete energy balance for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions. Plant Cell Environm. 32, 250–258 (2009).
  • Wilhelm C, Jakob T. From photons to biomass and biofuels: evaluation of possible light-dependent biotechnological processes based on comparative energy balances. Appl. Micro. Biotechnol. 92, 909–919 (2011).
  • Kunath C, Jakob T, Wilhelm C. The effect of the phycobilin antenna organisation on the estimation of real in-vivo electron transport rates in the cyanobacterium Microcystis aeruginosa and in the cryptophyte Cryptomonas ovata. Photosynth. Res. 111, 173–183 (2012).
  • Lehr F, Posten C. Closed photo-bioreactors as tools for biofuel production. Curr. Opin. Biotechnol. 20, 280–285 (2009).
  • Günter A et al. Methane production from glycolate excreting algae as a new concept in the production of biofuels. Biores Technol. 121, 454–457 (2012).
  • Wilhelm C. The biological perspective: new green chemistry concepts to improve the performance of microalgae. Technol. Assess. 21, 46–53 (2012).
  • Kaltschmitt M. Biomass as renewable source of energy, possible conversion routes. In: Kaltschmitt M (Section Ed.), Renewable Energy from Biomass. In: Encyclopedia of Sustainability Science and Technology. Meyers RA (Ed.): Springer, New York, Dordrecht, Heidelberg, London (2012).
  • Buswell AM, Mueller HF. Mechanism of methane fermentation. Ind. Engg Chem. 44(3), 550–552 (1951).
  • Punter G, Rickeard D, Larivé J-F, et al. Well-to-wheel evaluation for production of ethanol from wheat. A Report by the Low CVP Fuels Working Group, WTW Sub-Group. FWG-P-04-024. Low Carbon Vehicle Partnership. Online: http://www.rms.lv/bionett/Files/BioE-2004-001%20Ethanol_WTW_final_report.pdf. (2004).
  • Igelspacher R. Methode zur integrierten Bewertung von Prozessketten am Beispiel der Ethanolerzeugung aus Biomasse. Energie-und-Management-Verl.-Ges., Herrsching (2006).
  • Weinberg J, Kaltschmitt M. Greenhouse gas emissions from first generation ethanol derived from wheat and sugar beet in Germany – Analysis and comparison of advanced by-product utilization pathways. Appl. Energy 102, 131–139 (2013).
  • Döhler H, Eckel H, Frisch J, et al. Energiepflanzen: Daten für die Planung des Energiepflanzenanbaus. KTBL, Darmstadt (2006).
  • Kravanja P, Könighofer K, Canella L, Jungmeier G, Friedl A. Perspectives for the production of bioethanol from wood and straw in Austria: technical, economic, and ecological aspects. In: Clean Technologies and Environmental Policy 14(3), 411–425 (2012).
  • Ryckebosch E, Drouillon M, Vervaeren H. Techniques for transformation of biogas to biomethane. Biomass Bioenerg. 35 (5), 1633–1645 (2011).
  • Samson R, leDuy A. Biogas production from anaerobic digestion of Spirulina maxima algal biomass. Biotechnol. Bioeng. 24(8), 1919–1924 (1982).
  • Kaltschmitt M, Streicher W, Wiese A (Eds). Erneuerbare Energien – Systemtechnik, Wirtschaftlichkeit, Umweltaspekte. 5th ed. Springer, Berlin, Heidelberg (2013).
  • Kaltschmitt M, Streicher W, Wiese A (Eds). Renewable Energy – Technology, Economics and Environment. Springer, Berlin, Heidelberg (2007).
  • Wulf C, Kaltschmitt M. Life cycle assessment of hydrogen supply chain with special attention on hydrogen refuelling stations. Hydrogen Energy 37(21), 16711–16721 (2012).
  • Weinberg J, Kaltschmitt M. Life cycle assessment of mobility options using wood based fuels – Comparison of selected environmental effects and costs. Biores. Technol. 150, 420–428 (2013).
  • Schamphelaire L, Verstraite V. Revival of the biological sunlight to biogas energy conversion system. Biotechnol. Bioeng. 103, 296–304 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.