133
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Bio-oil via catalytic liquefaction of unhydrolyzed solids in aqueous medium

, , , , , & show all
Pages 431-446 | Received 06 Jun 2014, Published online: 23 Dec 2014

References

  • The Energy Independence and Security Act 2007 (EISA). Public Law, 110–140 (2007).
  • Balan V, Chiaramonti D, Kumar S. Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels, Bioprod. Biorefin. 7(6), 732–759 (2013).
  • Kumar S. Sub-and supercritical water technology for biofuels. Adv. Biofuels Bioprod.147–183 (2013).
  • Balan V, Bals B, Chundawat SP, Marshall D, Dale BE. Lignocellulosic biomass pretreatment using AFEX. Meth. Mol. Biol. 581, 61–77 (2009).
  • Jin M, Gunawan C, Uppugundla N, Balan V, Dale BE. A novel integrated biological process for cellulosic ethanol production featuring high ethanol productivity, enzyme recycling and yeast cells reuse. Energ. Environ. Sci. 5(5), 7168–7175 (2012).
  • Tao L, Aden A, Elander RT et al. Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Biores. Technol. 102(24), 11105–11114 (2011).
  • Kumar D, Murthy GS. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol. Biofuels 4, 27 (2011).
  • Savage PE. A perspective on catalysis in sub- and supercritical water. J. Supercrit. Fluid. 47(3), 407–414 (2009).
  • Delrue F, Li-Beisson Y, Setier PA et al. Comparison of various microalgae liquid biofuel production pathways based on energetic, economic and environmental criteria. Biores. Technol 136, 205–212 (2013).
  • Jena U, Das KC. Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energ. Fuel. 25(11), 5472–5482 (2011).
  • Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Biores. Technol. 109(0), 178–187 (2012).
  • Berl E. Production of oil from plant material. Science 99(2573), 309–312 (1944).
  • Kruse A, Funke A, Titirici MM. Hydrothermal conversion of biomass to fuels and energetic materials. Curr. Opin. Chem. Biol. 17(3), 515–521 (2013).
  • Peterson AA, Vogel F, Lachance RP, Froling M, Michael Jerry Antal J, Tester JW. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies.Energ Environ. Sci. 1, 32–65 (2008).
  • Hicks JC. Advances in C–O bond transformations in lignin-derived compounds for biofuels production. J. Phys. Chem. Lett. 2(18), 2280–2287 (2011).
  • Li Z, Garedew M, Lam CH, Jackson JE, Miller DJ, Saffron CM. Mild electrocatalytic hydrogenation and hydrodeoxygenation of bio-oil derived phenolic compounds using ruthenium supported on activated carbon cloth. Green Chem. 14, 2540–2549 (2012).
  • Karagoz S, Bhaskar T, Muto A, Sakata Y, Uddin MA. Low temperature hydrothermal treatment of biomass: Effect of reaction parameters on products and boiling point distributions. Energ. Fuel. 18, 234–241 (2004).
  • Minowa T, Zhen F, Ogi T, Varhegyi G. Decomposition of cellulose and glucose in hot-compressed water under catalyst-free conditions. J. Chem. Eng. Jpn 31, 131–134 (1998).
  • Duan P, Savage PE. Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind. Eng. Chem. Res. 50(1), 52–61 (2011).
  • Furimsky E. Catalytic hydrodeoxygenation. Appl. Catal. A Gen. 199(2), 147–190 (2000).
  • Jena U, Das KC, Kastner JR. Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis. Appl. Energ. 98(0), 368–375 (2012).
  • Elliott DC. Historical developments in hydroprocessing bio-oils. Energ. Fuel. 21(3), 1792–1815 (2007).
  • Choudhary TV, Phillips CB. Renewable fuels via catalytic hydrodeoxygenation. Appl. Catal. A Gen. 397(1-2), 1–12 (2011).
  • Krár M, Kovács S, Kalló D, Hancsók J. Fuel purpose hydrotreating of sunflower oil on CoMo/Al2O3 catalyst. Biores. Technol. 101(23), 9287–9293 (2010).
  • Vogelzang MW, Li CL, Schnit GCA, Gates BC, Petrakis LJ. Hydrogenation of 1-naphthol: activities and stabilities of molybdena and related catalysts. J. Catal. 84, 170–177 (1983).
  • Wang XQ, Ozkan US: Characterization of active sites over reduced Ni-Mo/Al2O3 catalysts for hydrogenation of linear aldehydes. J. Phys. Chem. B 109(5), 1882–1890 (2005).
  • Wang JX, Cai Y. The insight of active sites: reduced and sulfided CoMo catalysts. In: 23rd North American Catalysis Society Meeting. Louisville, Kentucky, 2013.
  • Roberts VM, Daage M, Oldenburg PD et al. Hydrothermal treatment of biomass with heterogeneous catalyst (US patent 13/285519) (2013).
  • Fivga A. Comparison of the effect of pre-treatment and catalysts on liquid quality from fast pyrolysis of biomass. PhD thesis, (2011).
  • Hancsók J, Kasza T, Kovács S, Solymosi P, Holló A. Production of bioparaffins by the catalytic hydrogenation of natural triglycerides. J. Clean. Prod. 34, 76–81 (2012).
  • Bunch AY, Wang X, Ozkan US. Hydrodeoxygenation of benzofuran over sulfided and reduced Ni–Mo/γ-Al2O3 catalysts: Effect of H2S. J. Mol. Catal. A Chem. 270(1–2), 264–272 (2007).
  • Tungal R, Shende R. Subcritical aqueous phase reforming of wastepaper for biocrude and H2 generation. Energ. Fuel. 27(6), 3194–3203 (2013).
  • Kumar S, Gupta RB. Biocrude production from switchgrass using subcritical water. Energ. Fuel. 23(10), 5151–5159 (2009).
  • Karagoz S, Bhaskar T, Muto A, Sakata Y, Oshiki T, Kishimoto T. Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chem. Eng. J. 108(1–2), 127–137 (2005).
  • Karagoz S, Bhaskar T, Muto A, Sakata Y. Catalytic hydrothermal treatment of pine wood biomass: effect of RbOH and CsOH on product distribution. J. Chem. Technol. Biotech. 80, 1097–1102 (2005).
  • Akdeniz F, Gündoğdua M. Direct and alkali medium liquefaction of Laurocerasus officinalis Roem. Energ. Convers. Manage. 48(1), 189–192 (2007).
  • Radoykova T, Nenkova S, Valchev I. Black liquor lignin products, isolation and characterization.J. Chem. Technol. Metall. 48(5), (2013).
  • Minowa T, Zhen F, Ogi T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J. Supercritic. Fluid. 13(1), 253–259 (1998).
  • Ba T, Chaala A, Garcia-Perez M, Rodrigue D, Roy C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions. Energ. Fuel. 18(3), 704–712 (2004).
  • Laurent E, Delmon B. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts: I. Catalytic reaction schemes. Appl. Catal. A Gen. 109(1), 77–96 (1994).
  • Demirbas A. Competitive liquid biofuels from biomass. Appl. Energ. 88(1), 17–28 (2011).
  • Akhtar J, Amin NAS. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sust. Energ. Rev. 15(3), 1615–1624 (2011).
  • Ramsurn H, Gupta RB. Production of biocrude from biomass by acidic subcritical water followed by alkaline supercritical water two-step liquefaction. Energ. Fuel. 26(4), 2365–2375 (2012).
  • Brown TM, Duan P, Savage PE. Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energ. Fuel. 24(6), 3639–3646 (2010).
  • Singh R, Prakash A, Dhiman SK et al. Hydrothermal conversion of lignin to substituted phenols and aromatic ethers. Biores. Technol. 165, 319–322 (2014).
  • Kruse A, Gawlik A. Biomass conversion in water at 330-410°C and 30-50 MPa: Identification of key compounds for indicating different chemical reaction pathways. Ind. Eng. Chem. Res. 42, 267–269 (2003).
  • Kibet J, Khachatryan L, Dellinger B. Molecular products and radicals from pyrolysis of lignin. Environ. Sci. Technol. 46(23), 12994–13001 (2012).
  • Pandey MP, Kim CS: Lignin depolymerization and conversion: A review of thermochemical methods. Chem. Eng. Technol. 34(1), 29–41 (2011).
  • Filley TR, Hatcher PG, Shortle WC, Praseuth RT. The application of 13C-labeled tetramethylammonium hydroxide (13C-TMAH) thermochemolysis to the study of fungal degradation of wood. Org. Geochem. 31(2–3), 181–198 (2000).
  • Goudriaan F, Peferoen DGR. Liquid fuels from biomass via a hydrothermal process. Chem. Eng. Sci. 45(8), 2729–2734 (1990).
  • Koenig AB, Sleighter RL, Salmon E, Hatcher PG. NMR Structural characterization of Quercus alba (white oak) degraded by the brown rot fungus, Laetiporus sulphureus. J. Wood Chem. Technol. 30(1), 61–85 (2010).
  • Hunter SE, Savage PE. Recent advances in acid- and base-catalyzed organic synthesis in high-temperature liquid water. Chem. Eng. Sci. 59(22–23), 4903–4909 (2004).
  • Barbier J, Charon N, Dupassieux Net al. Hydrothermal conversion of lignin compounds. A detailed study of fragmentation and condensation reaction pathways. Biomass Bioenerg. 46, 479–491 (2012).
  • Oasmaa A, Alén R, Meier D: Catalytic hydrotreatment of some technical lignins. Biores. Technol. 45(3), 189–194 (1993).
  • Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. Catalytic volarization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).
  • Shabtai J, Zmierczak W, Chornet E, Johnson D. Process for converting lignins into a high octane additive. Patent US20030100807 A1 (2003). URL: http://www.google.com/patents/US20030100807
  • Qing Q, Yang B, Wyman CE. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour. Technol. 101(24), 9624–9630 (2010).
  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS. Cellulose crystallinity – a key predictor of the enzymatic hydrolysis rate. FEBS J. 277(6), 1571–1582 (2010).
  • Valdez PJ, Nelson MC, Wang HY, Lin XN, Savage PE. Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass Bioenerg. 46, 317–331 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.