193
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Production of lignofuels and electrofuels by extremely thermophilic microbes

, , , , &

References

  • Easterlin RA. The worldwide standard of living since 1800. J. Econ. Perspect. 7–26 (2000).
  • Shafiee S, Topal E. When will fossil fuel reserves be diminished? Energy Policy 37(1), 181–189 (2009).
  • Ahn J, Brook EJ, Mitchell L et al. Atmospheric CO2 over the last 1000 years: a high-resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core. Global Biogeochem. Cy. 26(2), GB2027 (2012).
  • Berner RA. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426(6964), 323–326 (2003).
  • Dien BS, Bothast RJ, Nichols NN, Cotta MA. The US corn ethanol industry: an overview of current technology and future prospects. Int. Sugar J. 104(1241), 204–211 (2002).
  • Strogen B, Horvath A, Mckone TE. Fuel miles and the blend wall: costs and emissions from ethanol distribution in the United States. Environ. Sci. Technol. 46(10), 5285–5293 (2012).
  • Kang S, Önal H, Ouyang Y, Scheffran J, Tursun ÜD. Optimizing the biofuels infrastructure: transportation networks and biorefinery locations in Illinois. In: Handbook of Bioenergy Economics and Policy, (Eds). Springer, 151–173 (2010).
  • Atsumi S, Liao JC. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotech. 19(5), 414–419 (2008).
  • Peralta-Yahya PP, Keasling JD. Advanced biofuel production in microbes. Biotechnol. J. 5(2), 147–162 (2010).
  • Zhang F, Rodriguez S, Keasling JD. Metabolic engineering of microbial pathways for advanced biofuels production. Curr. Opin. Biotechnol. 22(6), 775–783 (2011).
  • Peralta-Yahya PP, Zhang F, Del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature 488(7411), 320–328 (2012).
  • Escobar JC, Lora ES, Venturini OJ, Yáñez EE, Castillo EF, Almazan O. Biofuels: environment, technology and food security. Renew. Sust. Energ. Rev. 13(6), 1275–1287 (2009).
  • Schmer MR, Vogel KP, Varvel GE, Follett RF, Mitchell RB, Jin VL. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland. PLOS ONE 9(3), e89501 (2014).
  • Congress U. Energy independence and security act of 2007. Public Law 2 (2007).
  • Svetlitchnyi V, Kensch O, Falkenhan D et al. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria. Biotechnol. Biofuel 6(1), 31 (2013).
  • Basen M, Rhaesa AM, Kataeva I et al. Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Bioresource Technol. 152, 384–392 (2014).
  • Himmel ME, Ding S-Y, Johnson DK et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813), 804–807 (2007).
  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374), 237–240 (1998).
  • Leopoldina GNaOS. Bioenergy – Chances and Limits. Halle (Saale). (2012).
  • Demain AL. Biosolutions to the energy problem. J. Ind. Microbiol. Biotechnol. 36(3), 319–332 (2009).
  • Takai K, Nakamura K, Toki T et al. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. PNAS 105(31), 10949–10954 (2008).
  • Morita RY. Psychrophilic bacteria. Bacteriol. Rev. 39(2), 144 (1975).
  • Kristjansson JK, Stetter KO. Thermophilic Bacteria. CRC Press (1991).
  • Cowan D. Enzymes from thermophilic archaebacteria: current and future applications in biotechnology. In: Biochem. Soc. Symp. 1991.
  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. Microbial α-amylases: a biotechnological perspective. Process. Biochem. 38(11), 1599–1616 (2003).
  • Cowan D. Thermophilic proteins: stability and function in aqueous and organic solvents. Comp. Biochem. Phys. A 118(3), 429–438 (1997).
  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Biores. Technol. 101(13), 4851–4861 (2010).
  • Yang B, Wyman CE. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod. Bior. 2(1), 26–40 (2008).
  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Molec. Biol. Rev. 66(3), 506–577 (2002).
  • Fontes CMGA, Gilbert HJ. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Ann. Rev. Biochem. 79(1), 655–681 (2010).
  • Olson DG, Mcbride JE, Shaw AJ, Lynd LR. Recent progress in consolidated bioprocessing. Curr. Opin. Microbiol. 23(3), 396–405 (2012).
  • Argyros DA, Tripathi SA, Barrett TF et al. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl. Environ. Microb. 77(23), 8288–8294 (2011).
  • Rainey FA, Donnison AM, Janssen PH et al. Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium, FEMS Microbiol. Lett. 120(3), 263–266 (1994).
  • Hudson RC, Schofield LR, Coolbear T, Daniel RM, Morgan HW. Purification and properties of an aryl beta-xylosidase from a cellulolytic extreme thermophile expressed in Escherichia coli. Biochem. J. 273(Pt 3), 645–650 (1991).
  • Gibbs MD, Elinder AU, Reeves RA, Bergquist PL. Sequencing, cloning and expression of a beta-1,4-mannanase gene, manA, from the extremely thermophilic anaerobic bacterium, Caldicellulosiruptor Rt8B.4. FEMS Microbiol. Lett. 141, 37–43 (1996).
  • Gibbs MD, Reeves RA, Farrington GK, Anderson P, Williams DP, Bergquist PL. Multidomain and multifunctional glycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolate Tok7B. Curr. Microbiol. 40(5), 333–340 (2000).
  • Zverlov V, Mahr S, Riedel K, Bronnenmeier K. Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile ‘Anaerocellum thermophilum’ with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144 (Pt 2), 457–465 (1998).
  • Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MWW, Kelly RM. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Microbiol. 19(3), 210–217 (2008).
  • Van De Werken HJG, Verhaart MRA, Vanfossen AL et al. Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl. Environ. Microb. 74(21), 6720–6729 (2008).
  • Svetlitchnyi V, Kensch O, Falkenhan D et al. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria. Biotechnol. Biofuel. 6(1), 31 (2013).
  • Blumer-Schuette S, Brown S, Sander K et al. Thermophilic lignocellulose deconstruction. FEMS Microbiol. Rev. Epub ahead of print, 1–56 (2013).
  • Ng TK, Benbassat A, Zeikus JG. Ethanol production by thermophilic bacteria – Fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl. Environ. Microb. 41(6), 1337–1343 (1981).
  • Shaw AJ, Hogsett DA, Lynd LR. Natural Competence in Thermoanaerobacter and Thermoanaerobacterium Species. Appl. Environ. Microb. 76(14), 4713–4719 (2010).
  • Blumer-Schuette SE, Lewis DL, Kelly RM. Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading Genus Caldicellulosiruptor. Appl. Environ. Microb. 76(24), 8084–8092 (2010).
  • Zurawski JV, Blumer-Schuette S, Conway JM, Kelly RM. The extremely thermophilic genus Caldicellulosiruptor: Physiological and genomic characteristics for complex carbohydrate conversion to molecular hydrogen. In: Advances in Photosynthesis and Respiration Including Bioenergy and Related Processes. Volume 38: Microbial BioEnergy: Hydrogen Production, Zannoni D, De Philippis R (Eds). Springer (2014).
  • Blumer-Schuette SE, Giannone RJ, Zurawski JV et al. Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. J. Bacteriol. 194(15), 4015–4028 (2012).
  • Dam P, Kataeva I, Yang S-J et al. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nuc. Acid. Res. 39(8), 3240–3254 (2011).
  • Bielen AA, Willquist K, Engman J, Van Der Oost J, Van Niel EW, Kengen SW. Pyrophosphate as a central energy carrier in the hydrogen-producing extremely thermophilic Caldicellulosiruptor saccharolyticus. FEMS Microbiol. Lett. 307, 48–54 (2010).
  • Izquierdo J, Sizova MV, Lynd LR. Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost. Appl. Environ. Microb. 76(11), 3545–3553 (2010).
  • Lochner A, Giannone R, Rodriguez M et al. Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Appl. Environ. Microb. 77(12), 4042–4054 (2011).
  • Brunecky R, Alahuhta M, Xu Q et al. Revealing nature's cellulase diversity: The digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342(6165), 1513–1516 (2013).
  • Ozdemir I, Blumer-Schuette SE, Kelly RM. S-Layer homology domain proteins Csac_0678 and Csac_2722 are implicated in plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl. Environ. Microb. 78(3), 768–777 (2012).
  • Lochner A, Giannone R, Keller M, Antranikian G, Graham D, Hettich R. Label-free quantitative proteomics for the extremely thermophilic bacterium Caldicellulosiruptor obsidiansis reveal distinct abundance patterns upon growth on cellobiose, crystalline cellulose, and switchgrass. J. Proteome Res. 10, 5302–5314 (2011).
  • Yang SJ, Kataeva I, Wiegel J et al. Classification of ‘Anaerocellum thermophilum’ strain DSM 6725 as Caldicellulosiruptor bescii sp. nov. Int. J. Syst. Evol. Bacteriol. 60, 2011–2015 (2010).
  • Kataeva I, Foston MB, Yang SJ et al. Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energ. Environ. Sci. 6, 2186–2195 (2013).
  • Yang SJ, Kataeva I, Hamilton-Brehm SD et al. Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellum thermophilum” DSM 6725. Appl. Environ. Microb. 75(14), 4762–4769 (2009).
  • Basen M, Rhaesa AM, Kataeva I et al. Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Biores. Technol. 152(0), 384–392 (2014).
  • Benner R, Maccubbin AE, Hodson RE. Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl. Environ. Microbiol. 47(5), 998–1004 (1984).
  • Ko J-J, Shimizu Y, Ikeda K, Kim S-K, Park C-H, Matsui S. Biodegradation of high molecular weight lignin under sulfate reducing conditions: Lignin degradability and degradation by-products. Biores. Technol. 100(4), 1622–1627 (2009).
  • Deangelis KM, Fortney JL, Borglin S, Silver WL, Simmons BA, Hazen TC. Anaerobic decomposition of switchgrass by tropical soil-derived feedstock-adapted consortia. Mbio. 3(1), (2012).
  • Wu Y-R, He J. Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation. Biores. Technol. 139, 5–12 (2013).
  • Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63(3), 258–266 (2003).
  • Jin MJ, Gunawan C, Balan V, Dale BE. Consolidated bioprocessing (CBP) of AFEX (TM)-pretreated corn stover for ethanol production using Clostridium phytofermentans at a high solids loading. Biotechnol. Bioeng. 109(8), 1929–1936 (2012).
  • Willquist K, Zeidan AA, Van Niel EW. Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory. Microbial. Cell Fact. 9 (2010).
  • Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R. Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. Bmc. Microbiol. 12, 295 (2012).
  • Schut GJ, Adams MWW. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J. Bacteriol. 191(13), 4451–4457 (2009).
  • Chung D, Cha M, Farkas J, Westpheling J. Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: Use for extending genetic methodologies to other members of this genus. Plos One. 8(5), e62881 (2013).
  • Chung DW, Farkas J, Westpheling J. Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol. Biofuel. 6 (2013).
  • Cha M, Chung DW, Elkins JG, Guss AM, Westpheling J. Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol. Biofuel. 6 (2013).
  • Chang TH, Yao S. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Appl. Microbiol. Biotechnol. 92(1), 13–27 (2011).
  • Pei JJ, Zhou Q, Jiang Y et al. Thermoanaerobacter spp. control ethanol pathway via transcriptional regulation and versatility of key enzymes. Metabolic Eng. 12(5), 420–428 (2010).
  • Roh Y, Liu SV, Li GS, Huang HS, Phelps TJ, Zhou JZ. Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl. Environ. Microbiol. 68(12), 6013–6020 (2002).
  • Yao S, Mikkelsen MJ. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl. Environ. Microb. 88(1), 199–208 (2010).
  • Yao S, Mikkelsen MJ. Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii. J. Mo.l Microb. Biotech. 19(3), 123–133 (2010).
  • Demain AL, Newcomb M, Wu JHD. Cellulase, clostridia, and ethanol. Microbiol. Molec. Biol. Rev. 69(1), 124–154 (2005).
  • Yi ZL, Su XY, Revindran V, Mackie RI, Cann I. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose. Plos One 8(12), (2013).
  • Sun Q, Madan B, Tsai SL, Delisa MP, Chen W. Creation of artificial cellulosomes on DNA scaffolds by zinc finger protein-guided assembly for efficient cellulose hydrolysis. Chem. Comm. 50(12), 1423–1425 (2014).
  • Vazana Y, Morais S, Barak Y, Lamed R, Bayer EA. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Cellulases 510, 429–452 (2012).
  • Van Niel EWJ, Claassen PaM, Stams AJM. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 81(3), 255–262 (2003).
  • Yee KL, Rodriguez M, Tschaplinski TJ et al. Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach. Biotechnol. Biofuel. 5, 81 (2012).
  • Yao S, Mikkelsen M. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl. Microbiol. Biotechnol. 88(1), 199–208 (2010).
  • Biswas R, Prabhu S, Lynd LR, Guss AM. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PLOS ONE 9(2), e86389 (2014).
  • Bhandiwad A, Guseva A, Lynd L. Metabolic engineering of Thermoanaerobacterium thermosaccharolyticum for increased n-butanol production. Adv. Microbial. 3, 46–51 (2013).
  • Conrado RJ, Haynes CA, Haendler BE, Toone EJ. Electrofuels: a new paradigm for renewable fuels. In: Advanced Biofuels and Bioproducts, (Eds). Springer, 1037–1064 (2013).
  • Blankenship RE, Tiede DM, Barber J et al. Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science 332(6031), 805–809 (2011).
  • Hawkins AB, Han Y, Lian H et al. Extremely thermophilic routes to microbial electrofuels. ACS Catalysis 9, 1043–1050 (2011).
  • Hawkins AS, Mcternan PM, Lian H, Kelly RM, Adams MWW. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Curr. Opin. Biotech. 24(3), 376–384 (2013).
  • Keller MW, Schut GJ, Lipscomb GL et al. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. PNAS 110(15), 5840–5845 (2013).
  • Nocera DG. The Artificial Leaf. Accounts Chem. Res. 45(5), 767–776 (2012).
  • Udupa K, Subramanian G, Udupa H. The electrolytic reduction of carbon dioxide to formic acid. Electrochim. Acta 16(9), 1593–1598 (1971).
  • Berg IA. Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways. Appl. Environ. Microb. 77(6), 1925–1936 (2011).
  • Berg IA, Kockelkorn D, Ramos-Vera WH et al. Autotrophic carbon fixation in archaea. Nat. Rev. Micro. 8(6), 447–460 (2010).
  • Erb TJ. Carboxylases in Natural and Synthetic Microbial Pathways. Appl. Environ. Microb. 77(24), 8466–8477 (2011).
  • Bar-Even A, Noor E, Milo R. A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63(6), 2325–2342 (2012).
  • Bar-Even A, Noor E, Lewis NE, Milo R. Design and analysis of synthetic carbon fixation pathways. PNAS 107(19), 8889–8894 (2010).
  • Boyle NR, Morgan JA. Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. Metab. Eng. 13(2), 150–158 (2011).
  • Fast AG, Papoutsakis ET. Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr. Opin. Chem. Eng. 1(4), 380–395 (2012).
  • Ramos-Vera WH, Weiss M, Strittmatter E, Kockelkorn D, Fuchs G. Identification of Missing Genes and Enzymes for Autotrophic Carbon Fixation in Crenarchaeota. J. Bacteriol. 193(5), 1201–1211 (2011).
  • Han Y, Hawkins AS, Adams MWW, Kelly RM. Epimerase (Msed_0639) and Mutase (Msed_0638 and Msed_2055) Convert (S)-Methylmalonyl-Coenzyme A (CoA) to Succinyl-CoA in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Cycle. Appl. Environ. Microb. 78(17), 6194–6202 (2012).
  • Hawkins AS, Han Y, Bennett RK, Adams MWW, Kelly RM. Role of 4-hydroxybutyrate-CoA synthetase in the CO2 fixation cycle in thermoacidophilic archaea. J. Biol. Chem. 288(6), 4012–4022 (2013).
  • Hawkins AB, Adams MWW, Kelly RM. Conversion of 4-Hydroxybutyrate to Acetyl-CoA and its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway. Appl. Environ. Microb. (2014).
  • Fiala G, Stetter K. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch. Microbiol. 145(1), 56–61 (1986).
  • Lipscomb GL, Stirrett K, Schut GJ et al. Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl. Environ. Microb. 77(7), 2232–2238 (2011).
  • Basen M, Sun J, Adams MWW. Engineering a hyperthermophilic archaeon for temperature-dependent product formation. mBio. 3(2), (2012).
  • Chandrayan SK, Mcternan PM, Hopkins RC, Sun J, Jenney FE, Adams MWW. Engineering Hyperthermophilic Archaeon Pyrococcus furiosus to Overproduce Its Cytoplasmic [NiFe]-Hydrogenase. J. Biol. Chem. 287(5), 3257–3264 (2012).
  • Ma K, Adams MWW. Hydrogenases I and II from Pyrococcus furiosus. Method. Enzymol. 331, 208–216 (2001).
  • Haaster DJV, Silva PJ, Hagedoorn P-L, Jongajan JA, Hagen WR. Reinvestigation of the Steady-State Kinetics and Physiological Function of the soluble NiFe-Hydrogenase I of Pyrococcus furiosus. J. Bacteriol. 190(5), 4 (2007).
  • Lee HS, Kang SG, Bae SS et al. The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J. Bacteriol. 190(22), 7491–7499 (2008).
  • Lipscomb GL, Schut GJ, Thorgersen MP, Nixon WJ, Kelly RM, Adams MWW. Engineering hydrogen gas production from formate in a hyperthermophile by heterologous production of an 18-subunit membrane-bound complex. J. Biol. Chem. 289(5), 2873–2879 (2014).
  • Thorgersen MP, Lipscomb GL, Schut GJ, Kelly RM, Adams MW. Deletion of acetyl-CoA synthetases I and II increase production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus. Metab. Eng. (2014).
  • Mai X, Adams M. Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 178(20), 5897–5903 (1996).
  • Glasemacher J, Bock A-K, Schmid R, Schönheit P. Purification and properties of acetyl-CoA Synthetase (ADP-forming), an archaeal enzyme of acetate formation and ATP synthesis, from the hyperthermophile Pyrococcus furiosus. Eur. J. Biochem. 244(2), 561–567 (1997).
  • Werpy T, Petersen G. Top value added chemicals from biomass. (2004).
  • Lonsane BK, Saucedo-Castaneda G, Raimbault M et al. Scale-up strategies for solid state fermentation systems. Process. Biochem. 27(5), 259–273 (1992).
  • Wu YY, Engineer PM, Chow S, Engineer PM, Ganji AR, Engineer PS. Energy efficiency opportunities in wineries for retrofit and new construction projects. Industrial Energy Technology Conference 2013 (2013).
  • Jones DT, Shirley M, Wu X, Keis S. Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. J. Mol. Microb. Biotech. 2(1), 21–26 (2000).
  • Gleick PH. Water and conflict: fresh water resources and international security. Int. Security 18(1), 79–112 (1993).
  • Small C, Nicholls RJ. A global analysis of human settlement in coastal zones. J. Coast. Res. 584–599 (2003).
  • Ferber D. Synthetic biology. Microbes made to order. Science 303(5655), 158–161 (2004).
  • Benner SA, Sismour AM. Synthetic biology. Nat. Rev. Genet. 6(7), 533–543 (2005).
  • Andrianantoandro E, Basu S, Karig DK, Weiss R. Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2(1), (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.