158
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Miscanthus agronomy and bioenergy feedstock potential on minesoils

&
Pages 741-770 | Received 15 Dec 2014, Accepted 26 Feb 2015, Published online: 20 Apr 2015

References

  • Dornburg V, Van Vuuren D, Van De Ven G et al. Bioenergy revisited: Key factors in global potentials of bioenergy. Energ. Environ. Sci. 3(3), 258–267 (2010).
  • Chum H, Faaij A, Moreira J et al.Bioenergy. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Edenhofer O, Pichs-Madruga R, Sokona Y et al. (Eds). Cambridge University Press, Cambridge, UK, and New York, USA, 216–330 (2011).
  • Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH. Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crop Res. 111(1–2), 55–64 (2009).
  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science 319(5867), 1235–1238 (2008).
  • Cunningham LJ, Roberts BA, Canis B, Yacobucci BD. Alternative fuel and advanced vehicle technology incentives: A summary of federal programs. Congressional Research Service Report for Congress. (2013).
  • Renewable Fuel Association. Going global: 2015 Ethanol industry outlook, Washington, DC. (2015).
  • Tyner WE. Biofuels and agriculture: a past perspective and uncertain future. Int. J. Sust. Dev. World Ecol. 19(5), 389–394 (2012).
  • Gramig BM, Reeling CJ, Cibin R, Chaubey I. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy. Environ. Sci. Technol. 47(4), 1784–1791 (2013).
  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 103(30), 11206–11210 (2006).
  • United States Congress. Energy Independence and Security Act of 2007. (2007).
  • Donner SD, Kucharik CJ. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc. Natl. Acad. Sci. USA 105(11), 4513–4518 (2008).
  • United States Environmental Protection Agency. 2014 Standards for the Renewable Fuel Standard Program. US Environmental Protection Agency (EPA). Federal Register Vol. 78 No. 230. (2013).
  • Hernandez M, Kasper M. An overview of the Renewable Fuel Standard and why it is good for the climate. Center for American Progress. (2013).
  • Energy Information Agency (EIA). Today in energy: Cellulosic biofuels begins to flow but in lower volumes than foreseen by statutory targets. United States Department of Energy, Washington, DC (2013).
  • United States Department of Energy. US Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry, RD Perlack and BJ Stokes (Leads), ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, TN. 227p. (2011).
  • Lal R, Pimentel D. Biofuels from crop residues. Soil Tillage Res. 93(2), 237–238 (2007).
  • Karlen DL, Lal R, Follett RF et al. Crop residues: the rest of the story. Environ. Sci. Technol. 43(21), 8011–8015 (2009).
  • Lal R. World crop residues production and implications of its use as a biofuel. Environ. Int. 31(4), 575–584 (2005).
  • Pimentel D, Patzek TW. Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat. Resour. Res. 14(1), 65–76 (2005).
  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP. Feedstocks for lignocellulosic biofuels. Science 329(5993), 790–792 (2010).
  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25(4), 335–361 (2003).
  • Stewart JR, Toma Y, Fernandez FG, Nishiwaki A, Yamada T, Bollero G. The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. Glob. Change Biol. Bioenerg. 1(2), 126–153 (2009).
  • Jodl S, Eppel-Hotz A, Marzini K. Examination of the ecological value of miscanthus – faunistic studies. Biomass for Energy and Industry: Proceedings of the 10th European Conference. Wirzburg, Germany, USA, 8–11 June 1998.
  • Bernton H, Kovarik B, Skylar S. The Forbiden Fuel: Power Alcohol in the 20th Century. B. Griffin, New York, USA (1982).
  • Eisentraut A. Technology Roadmap: Biofuels for Transport. International Energy Agency, Renewable Energy Division, Paris, France (2011).
  • Knothe G.The history of vegetable oil-based diesel fuels. In: The Biodiesel Handbook. Knothe G, Krahl J. (Eds). AOCS Press, Champaign, IL, USA (2005).
  • International Energy Agency (IEA). World Energy Outlook 2013. Global energy trends. Paris, France (2013).
  • Bessou C, Ferchaud F, Gabrielle B, Mary B. Biofuels, greenhouse gases and climate change. A review. Agron. Sust. Develop. 31(1), 1–79 (2011).
  • Strong RM. Commercial decisions from comparison of gasoline and alcohol tests on internal combustion engines. Geological Survey Bulletin # 392. Washington, DC (1909).
  • Huguenard CM. Dual fuel for diesel engines using cottonseed oil [MS thesis]. The Ohio State University, Columbus, OH, USA (1951).
  • Lem RFA. Dual fuel for diesel engines using corn oil with variable injection timing [MS thesis]. The Ohio State University, Columbus, OH, USA (1952).
  • Baker AW, Sweigert A. Comparison of various vegetable oils as a fuel for compression engines. Proceedings of Oil & Gas Power Meetings of ASME, 40–48 (1947).
  • Radich A. Biodiesel Performance, Costs, and Use. Analysis report. United States Department of Energy, Energy Information Adminitration, Washinhton, DC. (2004).
  • United States Department of Energy (US DOE). Biomass as feedstock for a bioenergy and bioproducts of industry: The technical feasibility of a Billion-ton annual supply. 59 pp, Oak Ridge, TN, USA (2005).
  • United States Congress. Clean Air Act Ammendment. Public Law 101–549, Washington, DC. 314 pp (1990).
  • United States Congress. Energy Policy Act of 2005. Public Law 109-58, Washington, DC. (2005).
  • Schnepf R, Yacobucci BD. Renewable Fuel Standard (RFS): Overview and Issues. Washington, DC. (2013).
  • Renewable Fuel Association (RFA). 2010 Ethanol Industry Outlook: climate of opportunity. Washington, D.C. (2010).
  • Gnansounou E, Dauriat A, Villegas J, Panichelli L. Life cycle assessment of biofuels: Energy and greenhouse gas balances. Bioresource Technol. 100(21), 4919–4930 (2009).
  • Huang W. Impact of rising natural gas prices on US ammonia supply. ( WRS-0702), Economic Research Service, United States Department of Agriculture, Washington. D.C. 18 p (2007).
  • Robertson GP, Dale VH, Doering OC et al. Agriculture – Sustainable biofuels Redux. Science 322(5898), 49–50 (2008).
  • Hein KRG. Future energy supply in Europe – challenge and chances. Fuel 84(10), 1189–1194 (2005).
  • Energy Information Administration. Annual Energy Outlook 2014 with projections to 2040, (DOE/EIA-0383 United States Department of Energy, Office of Intergrated Analysis, Washington, DC. (2014).
  • Benbi DK, Brar JS. A 25-year record of carbon sequestration and soil properties in intensive agriculture. Agron. Sust. Develop. 29(2), 257–265 (2009).
  • Sims REH, Mabee W, Saddler JN, Taylor M. An overview of second generation biofuel technologies. Bioresource Technol. 101(6), 1570–1580 (2010).
  • Hill J, Polasky S, Nelson E et al. Climate change and health costs of air emissions from biofuels and gasoline. Proc. Natl. Acad. Sci. USA 106(6), 2077–2082 (2009).
  • Levasseur A, Lesage P, Margni M, Deschenes L, Samson R. Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ. Sci. Technol. 44(8), 3169–3174 (2010).
  • Dohleman FG, Heaton EA, Long SP. Perennial grasses as second-generation sustainable feedstocks without conflict with food production. In: Handbook of Bioenergy Economics and Policy. Khanna M, Scheffran J, Zilberman D (Eds). Springer, New York, NY 27–37 (2010).
  • Blanco-Canqui H. Energy crops and their implications on soil and environment. Agron. J. 102(2), 403–419 (2010).
  • Bonin C, Lal R. Agronomic and ecological implication of biofuels. Adv. Agron. 117, 1–50 (2012).
  • Luo Z, Wang E, Sun OJ. Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: A review and synthesis. Geoderma 155(3–4), 211–223 (2010).
  • Semere T, Slater FM. Ground flora, small mammal and bird species diversity in miscanthus (Miscanthus x giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy 31(1), 20–29 (2007).
  • Allan JD. Landscapes and riverscapes: The influence of land use on stream ecosystems. Ann. Review Ecol. Evol. Systematics 35, 257–284 (2004).
  • United States Environmental Protection Agency (US EPA). Hypoxia in the Northern Gulf of Mexico. An update by the US EPA Science Advisory Board.Washington, DC. (2008).
  • Pimentel D, Marklein A, Toth MA et al. Food versus biofuels: environmental and economic costs. Human. Ecol. 37(1), 1–12 (2009).
  • Xu Z, Huang F. Pretreatment methods for bioethanol production. Appl. Biochem. Biotechnol. 174(1), 43–62 (2014).
  • Yoshida M, Liu Y, Uchida S et al. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci. Biotechnol., Biochem. 72(3), 805–810 (2008).
  • Leonowicz A, Matuszewska A, Luterek J et al. Biodegradation of lignin by white rot fungi. Fungal Genet. Biol. 27(2–3), 175–185 (1999).
  • Gupta A, Verma JP. Sustainable bio-ethanol production from agro-residues: A review. Ren. Sust. Energy Rev. 41, 550–567 (2015).
  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Bioethanol production from agricultural wastes: An overview. Ren. Energy 37(1), 19–27 (2012).
  • Service RF. Biofuel researchers prepare to reap a new harvest. Science 315(5818), 1488–1491 (2007).
  • Searchinger T, Heimlich R, Houghton RA et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867), 1238–1240 (2008).
  • Ditomaso JM, Reaser JK, Dionigi CP et al. Biofuel vs bioinvasion: seeding policy priorities. Environ. Sci. Technol. 44(18), 6906–6910 (2010).
  • Meki MN, Atwood JD, Norfleet LM, Williams JR, Gerik TJ, Kiniry JR. Corn residue removal effects on soybean yield and nitrogen dynamics in the upper mississippi river basin. Agroecol. Sust. Food Syst. 37(3), 379–400 (2013).
  • Hoskinson RL, Karlen DL, Birrell SJ, Radtke CW, Wilhelm WW. Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios. Biomass Bioenergy 31(2–3), 126–136 (2007).
  • Christian DG, Riche AB. Nitrate leaching losses under Miscanthuus grass planted on a silty clay loam soil. Soil Use Manage. 14(3), 131–135 (1998).
  • Mcisaac GF, David MB, Mitchell CA. Miscanthus and switchgrass production in Central Illinois: impacts on hydrology and inorganic nitrogen leaching. J. Environ. Qual. 39(5), 1790–1799 (2010).
  • Mooney DF, Roberts RK, English BC, Tyler DD, Larson JA. Yield and breakeven price of ‘Alamo’ switchgrass for biofuels in Tennessee. Agron. J. 101(5), 1234–1242 (2009).
  • Love BJ, Nejadhashemi AP. Water quality impact assessment of large-scale biofuel crops expansion in agricultural regions of Michigan. Biomass Bioenergy 35(5), 2200–2216 (2011).
  • Wu Y, Liu S. Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin. Biomass Bioenergy 36, 182–191 (2012).
  • Linde-Laursen I. Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Hereditas 119(3), 297–300 (1993).
  • Greef JM, Deuter M. Syntaxonomy of Miscanthus times giganteus Greef et Deu. J. Appl. Bot. - Angew. Bot. 67(3–4), 87–90 (1993).
  • Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA. The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Amer. J. Botany 89(2), 279–286 (2002).
  • Hodkinson TR, Chase MW, Renvoize SA. Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Annals Bot. 89(5), 627–636 (2002).
  • Clifton-Brown JC, Lewandowski I, Andersson B et al. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron. J. 93(5), 1013–1019 (2001).
  • Naidu SL, Moose SP, Al-Shoaibi AK, Raines CA, Long SP. Cold tolerance of C4 photosynthesis in Miscanthus x giganteus: Adaptation in amounts and sequence of C-4 photosynthetic enzymes. Plant Physiol. 132(3), 1688–1697 (2003).
  • Naidu SL, Long SP, Moose SP, Al-Shoabi KA, Raines CA. Cold-tolerant C4 photosynthesis in Miscanthus x giganteus. Photosynth. Res. 69(1–3), 148 (2001).
  • Clifton-Brown JC, Lewandowski I, Bangerth F, Jones MB. Comparative responses to water stress in stay-green, rapid- and slow senescing genotypes of the biomass crop, Miscanthus. New Phytol. 154(2), 335–345 (2002).
  • Clifton-Brown JC, Breuer J, Jones MB. Carbon mitigation by the energy crop, Miscanthus. Global Change Biol. 13(11), 2296–2307 (2007).
  • Hodkinson TR, Chase MW, Lledo MD, Salamin N, Renvoize SA. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J. Plant Res. 115(1121), 381–392 (2002).
  • Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19(4), 209–227 (2000).
  • Clifton-Brown J, Chiang YC, Hodkinson TR. Miscanthus: Genetic resources and breeding potential to enhance bioenergy production. In: Genetic Improvement of Bioenergy Crops, Vermerris W (Ed.). Springer Science & Business Media LLC, New York, NY (2008).
  • Scally L, Hodkinson TR, Jones MB. Origin and agronomy of Miscanthus. In: Miscanthus For Energy and Fibre. Jones MB, Walsh M (Eds). James & James, London, UK, 1–9 (2001).
  • Hillier J, Whittaker C, Dailey G et al. Greenhouse gas emissions from four bioenergy crops in England and Wales: Integrating spatial estimates of yield and soil carbon balance in life cycle analyses. Glob. Change Biol. Bioenerg. 1(4), 267–281 (2009).
  • Karp A, Shield I. Bioenergy from plants and the sustainable yield challenge. New Phytol. 179(1), 15–32 (2008).
  • Schmer MR, Vogel KP, Mitchell RB, Perrin RK. Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. USA 105(2), 464–469 (2008).
  • Heaton E, Long S, Voigt T, Jones M, Clifton-Brown J. Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mit. Adapt. Strategies Global Change 9(4), 433–451 (2004).
  • Beale CV, Long SP. Can perrenial C4 grasses attain high efficiencies of radiant energy conversion in cool climates. Plant Cell Environ. 18(6), 641–650 (1995).
  • Jorgensen U, Schwarz KU. Why do basic research? A lesson from commercial exploitation of miscanthus. New Phytol. 148(2), 190–193 (2000).
  • Venendaal R, Jorgensen U, Foster CA. European energy crops: A synthesis. Biomass Bioenergy 13(3), 147–185 (1997).
  • Parrish DJ, Fike JH. The biology and agronomy of switchgrass for biofuels. Crit. Rev. Plant Sci. 24(5–6), 423–459 (2005).
  • Heaton E, Voigt T, Long SP. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27(1), 21–30 (2004).
  • Pyter RJ, Voigt T, Heaton EA, Dohleman FG, Long SP. Giant Miscanthus: Biomass crop for Illinois. In: Issues in New Crops and New Uses. Janick J, Whipkey A (Eds). ASH Press, Alexandria, VA, USA, 39–42 (2007).
  • Heaton EA, Dohleman FG, Long SP. Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biol. 14(9), 2000–2014 (2008).
  • Clifton-Brown JC, Lewandowski I. Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol. 148(2), 287–294 (2000).
  • Quinn LD, Allen DJ, Stewart JR. Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States. Glob. Change Biol. Bioenerg. 2(6), 310–320 (2010).
  • Heaton EA, Boersma N, Caveny JD, Voigt T, Dohleman FG. Miscanthus (Miscanthus x giganteus) for biofuel production. Extension: America’s Research Based Learning Network Centerville. AL, USA (2011).
  • Caslin B. Energy crops agronomy. Energy crops manual Oak Park, Carlow, Ireland. 52 pp (2010).
  • Clifton-Brown JC, Lewandowski I. Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Annals Bot. 86(1), 191–200 (2000).
  • Pyter RJ, Heaton EA, Dohleman FG, Voigt T, Long SP. Agronomic experiences with Miscanthus x giganteus in Illinois USA. In: Biofuels: Methods and Protocols. Mielenz JR (Ed.). Human Press, New York, USA, 41–52 (2009).
  • Pyter RJ, Dohleman FG, Voigta TB. Effects of rhizome size, depth of planting and cold storage on Miscanthus x giganteus establishment in the Midwestern USA. Biomass Bioenergy 34(10), 1466–1470 (2010).
  • Lewandowski I. Propagation method as an important factor in the growth and development of Miscanthus x giganteus. Ind. Crop Prod. 8(3), 229–245 (1998).
  • Hastings A, Clifton-Brown J, Wattenbach M, Mitchell P, Smith P. The development of MISCANFOR, a new Miscanthus crop growth model: towards more robust yield predictions under different climatic and soil conditions. Glob. Change Biol. Bioenerg. 1(2), 154–170 (2009).
  • Zub HW, Brancourt-Hulmel M. Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron. Sust. Develop. 30(2), 201–214 (2010).
  • Bullard MJ, Nixon PMI, Cheath M. Quantifying the yield of Miscanthus x giganteus in the UK. Asp. Appl. Biol. 49, 199–206 (1997).
  • Farrell AD, Clifton-Brown JC, Lewandowski I, Jones MB. Genotypic variation in cold tolerance influences the yield of Miscanthus. Annals Appl. Botany 149(3), 337–345 (2006).
  • Beale CV, Long SP. Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4 grasses Miscanthus x giganteus and Spartina cynosuroides. Biomass Bioenergy 12(6), 419–428 (1997).
  • Christian DG, Poulton PR, Riche AB, Yates NE, Todd AD. The recovery over several seasons of N15-labelled fertilizer applied to Miscanthus x giganteus ranging from 1 to 3 years old. Biomass Bioenergy 30(2), 125–133 (2006).
  • Himken M, Lammel J, Neukirchen D, Czypionkakrause U, Olfs HW. Cultivation of Miscanthus under west European conditions: Seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189(1), 117–126 (1997).
  • Jenkins BM, Baxter LL, Miles TR, Miles TR. Combustion properties of biomass. Fuel Process. Technol. 54(1–3), 17–46 (1998).
  • Christian DG, Riche AB, Yates NE. Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Ind. Crop Prod. 28(3), 320–327 (2008).
  • Davis SC, Parton WJ, Dohleman FG et al. Comparative Biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus x giganteus agro-ecosystem. Ecosysstems 13(1), 144–156 (2010).
  • Acaroglu M, Aksoy AS. The cultivation and energy balance of Miscanthus x giganteus production in Turkey. Biomass Bioenergy 29(1), 42–48 (2005).
  • Mantineo M, D'agosta GM, Copani V, Patane C, Cosentino SL. Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crop Res. 114(2), 204–213 (2009).
  • Miguez FE, Villamil MB, Long SP, Bollero GA. Meta-analysis of the effects of management factors on Miscanthus x giganteus growth and biomass production. Agric. For. Meteor. 148(8–9), 1280–1292 (2008).
  • Arundale RA, Dohleman FG, Voigt TB, Long SP. Nitrogen fertilization does significantly increase yields of stands of Miscanthus x giganteus and Panicum virgatum in multiyear trials in Illinois. Bioenergy Res. 7(1), 408–416 (2014).
  • Danalatos NG, Archontoulis SV, Mitsios I. Potential growth and biomass productivity of Miscanthus x giganteus as affected by plant density and N-fertilization in central Greece. Biomass Bioenergy 31(2–3), 145–152 (2007).
  • Lewandowski I, Clifton-Brown JC, Andersson B et al. Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron. J. 95(5), 1274–1280 (2003).
  • Heaton EA, Dohleman FG, Long SP. Seasonal nitrogen dynamics of Miscanthus x giganteus and Panicum virgatum. Glob. Change Biol. Bioenerg. 1(4), 297–307 (2009).
  • Smith R, Slater FM. The effects of organic and inorganic fertilizer applications to Miscanthus x giganteus, Arundo donax and Phalaris arundinacea, when grown as energy crops in Wales, UK. Glob. Change Biol. Bioenerg. 2(4), 169–179 (2010).
  • Dohleman FG, Long SP. More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol. 150(4), 2104–2115 (2009).
  • Dohleman FG, Heaton EA, Leakey ADB, Long SP. Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant Cell Environ. 32(11), 1525–1537 (2009).
  • Propheter JL, Staggenborg SA, Wu X, Wang D. Performance of annual and perennial biofuel crops: yield during the first two years. Agron. J. 102(2), 806–814 (2010).
  • Propheter JL, Staggenborg S. Performance of annual and perennial biofuel crops: nutrient removal during the first two years. Agron. J. 102(2), 798–805 (2010).
  • Dohleman FG, Heaton EA, Arundale RA, Long SP. Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in Miscanthus x giganteus and Panicum virgatum across three growing seasons. Glob. Change Biol. Bioenerg. 4(5), 534–544 (2012).
  • Lesur C, Jeuffroy M-H, Makowski D et al. Modeling long-term yield trends of Miscanthus x giganteus using experimental data from across Europe. Field Crop Res. 149, 252–260 (2013).
  • Hatch MD. C4 photosynthesis: A unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta 895(2), 81–106 (1987).
  • Furbank RT, Hatch MD. Mechanism of C4 photosynthesis: The size and composition of the inorganic carbon pool in the bundle sheath cells. Plant Physiol. 85(4), 958–964 (1987).
  • Edwards GE, Walker DA. C3, C4 mechanisms and cellular and environmental regulation of photosynthesis. Blackwell Scientific Publication, London, UK (1983).
  • Heaton EA, Dohleman FG, Miguez AF et al. Miscanthus: a promising biomass crop. Adv. Bot. Res. 56, 75–137 (2010).
  • Long SP. C4 photosynthesis at a low temperature. Plant Cell Environ. 6(4), 345–363 (1983).
  • Beale CV, Bint DA, Long SP. Leaf photosynthesis in the C4 grass Miscanthus x giganteus, growing in the cool temperate climate of southern England. J. Exp. Bot 47(295), 267–273 (1996).
  • Long SP, Humphries S, Falkowski PG. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 633–662 (1994).
  • Farage PK, Blowers D, Long SP, Baker NR. Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus x giganteus. Plant Cell Environ. 29(4), 720–728 (2006).
  • Wang D, Portis ARJr, Moose SP, Long SP. Cool C(4) photosynthesis: Pyruvate P(i) dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus x giganteus. Plant Physiol. 148(1), 557–567 (2008).
  • Service RF. Solar energy – Is it time to shoot for the Sun? Science 309(5734), 548–551 (2005).
  • Pimentel D, Patzek T. Green plants, fossil fuels, and now biofuels. Bioscience 56(11), 875 (2006).
  • Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW. Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol. Bioengn. 108(3), 511–520 (2011).
  • Lygin AV, Upton J, Dohleman FG et al. Composition of cell wall phenolics and polysaccharides of the potential bioenergy crop - Miscanthus. Glob. Change Biol. Bioenerg. 3(4), 333–345 (2011).
  • Dee S, Bell AT. Effects of reaction conditions on the acid-catalyzed hydrolysis of miscanthus dissolved in an ionic liquid. Green Chem. 13(6), 1467–1475 (2011).
  • Guo G-L, Hsu D-C, Chen W-H, Chen W-H, Hwang W-S. Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition. Enzyme Microb. Technol. 45(2), 80–87 (2009).
  • Ligero P, Vega A, Villaverde JJ. Delignification of Miscanthus x giganteus by the Milox process. Bioresource Technol. 101(9), 3188–3193 (2010).
  • Tilman D, Socolow R, Foley JA et al. Beneficial biofuels-the food, energy, and environment trilemma. Science 325(5938), 270–271 (2009).
  • Nickerson C, Ebel R, Borchers A, Carriazo F. Major uses of land in the United States, 2007. Report No. EIB-89. Last updated May 2012. Washington, D.C. (2013).
  • Johnson JMF, Franzluebbers AJ, Weyers SL, Reicosky DC. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 150(1), 107–124 (2007).
  • Qin Z, Zhuang Q, Chen M. Impacts of land use change due to biofuel crops on carbon balance, bioenergy production, and agricultural yield, in the conterminous United States. Glob. Change Biol. Bioenerg. 4(3), 277–288 (2012).
  • Zhuang Q, Qin Z, Chen M. Biofuel, land and water: maize, switchgrass or Miscanthus? Environ. Res. Lett. 8(1) 015020 (6pp) (2013).
  • Wallander S, Aillery M, Hellerstein D, Hand M. The role of conservation programs in drought risk adaptation. Economic Research Report Number 148. United States Department of Agriculture, Washington, D.C. (2013).
  • Bonin C, Lal R. Bioethanol potentials and life-cycle assessments of biofuel feedstocks. Crit. Rev. Plant Sci. 31(4), 271–289 (2012).
  • Field CB, Campbell JE, Lobell DB. Biomass energy: The scale of the potential resource. Trends Ecol. Evol. 23(2), 65–72 (2008).
  • Ussiri DAN, Lal R, Jacinthe PA. Soil properties and carbon sequestration of afforested pastures in reclaimed minesoils of Ohio. Soil. Sci. Soc. Am. J. 70(5), 1797–1806 (2006).
  • Sencindiver JC, Ammons JT. Minesoil genesis and classification. In: Reclamation of Drastically Disturbed Lands. Agronomy Series # 41. Barnhisel RI, Darmody RG, Daniels WL (Eds). Soil Science Society of America Inc., Madison, USA, 595–613 (2000).
  • Ussiri DAN, Jacinthe P-A, Lal R. Methods for determination of coal carbon in reclaimed minesoils: A review. Geoderma 214, 155–167 (2014).
  • Zeleznik JD, Skousen JG. Survival of three tree species on old reclaimed surface mines in Ohio. J. Environ. Qual. 25(6), 1429–1435 (1996).
  • Zipper CE, Burger JA, Skousen JG et al. Restoring forests and associated ecosystem services on Appalachian coal surface mines. Environ. Manage. 47(5), 751–765 (2011).
  • United States Congress. Surface Mining Control and Reclamation Act. Public Law 95–87, Wahington, DC. (1977).
  • Barnhisel RI, Hower JM. Coal surface mine reclamation in the eastern United States: The revegetation of disturbed lands to hayland/pasture or cropland. 233–275 (1997).
  • Office of Surface Mining and Reclamation Enforcement (OSMRE). Annual Report 2009, Department of Interior, Washington, D.C. 65 pp. (2010).
  • Shukla MK, Lal R, Underwood J, Ebinger M. Physical and hydrological characteristics of reclaimed minesoils in Southeastern Ohio. Soil Sci. Soc. Am. J. 68(4), 1352–1359 (2004).
  • Shrestha RK, Ussiri DAN, Lal R. Terrestrial carbon sequestration potential in reclaimed mine land ecosystems to mitigate the greenhouse effect. In: Soil Carbon Seq. Greenhouse Effect. Lal R, Follett R (Eds.). Soil Science Society of America, Madison, WI, USA, 321–346 (2009).
  • Haering KC, Daniels WL, Feagley SE. Reclaiming mined lands with biosolids, manures, and papermill sludges. In: Reclamation of Drastically Disturbed Lands. Agronomy Monograph 41, Barnhisel RI, Darmody RG, Daniel WL (Eds). American Society of Agronomy/Crop Science Society of America/Soil Science Society of America, Madison, WI, USA, 615–644 (2000).
  • Shrestha RK, Lal R, Jacinthe P-A. Enhancing carbon and nitrogen sequestration in reclaimed soils through organic amendments and chiseling. Soil Sci. Soc. Am. J. 73(3), 1004–1011 (2009).
  • Ussiri DAN, Lal R. Carbon sequestration in reclaimed minesoils. Crit. Rev. Plant. Sci. 24(3), 151–165 (2005).
  • Ussiri DAN, Lal R. Land management effects on carbon sequestration and soil properties in reclaimed farmland of Eastern Ohio, USA. Open J. Soil. Sci. 3(1), 46–57 (2013).
  • Sobek AA, Skousen JG, Fisher SE. Chemical and physical properties of overburdens and minesoils. In: Reclamation of Drastically Disturbed Lands. Agronomy Monograph 41. Hatfield JL (Ed.). ASA, CSA, SSSA Inc., Madison, WI, USA, 77–104 (2000).
  • Roberts JA, Daniels WL, Bell JC, Martens DC. Tall fescue production and nutrient status on southwest virginia mine soils. J. Environ. Qual. 17(1), 55–62 (1988).
  • Haering KC, Daniels WL, Galbraith JM. Appalachian mine soil morphology and properties: Effects of weathering and mining method. Soil. Sci. Soc. Am. J. 68(4), 1315–1325 (2004).
  • Skousen J, Keene T, Marra M, Gutta B. Reclamation of mined land with switchgrass, miscanthus, and arundo for biofuel production. In Proceedings of 2013 National Meeting of American Society of Mining and Reclamation: Reclamation Across Industries June 1–6, 2013. Barnhisel, R.I. (ed). 318–331. (2013).
  • Marcet P, Rey J, Gonzalez S. Effect of applying sewage sludge on Mitilus galloprovincialis Lam shells on degraded mine soil. In: 18th World Congress of Soil Science. Philadelphia, PA, USA, 9–15 July 2006.
  • Neukirchen D, Himken M, Lammel J, Czypionkakrause U. Spatial and temporal distribution of the root system and root nutrient content of established Miscanthus crop. Eur. J. Agron. 11, 301–309 
(1999).
  • Mann JJ, Barney JN, Kyser GB, Di Tomaso JM. Miscanthus x giganteus and Arundo donax shoot and rhizome tolerance of extreme moisture stress. Glob. Change Biol. Bioenerg. 5(6), 693–700 (2013).
  • Zipper CE, Burger JA, Barton CD, Skousen JG. Rebuilding soils on mined land for native forests in Appalachia. Soil Sci. Soc. Am. J. 77(2), 337–349 (2013).
  • Office of Surface Mining and Reclamation Enforcement. Annual Report 2010–2011: Reclaiming oversight, Reclaiming communities. Department of Interior, Washington, DC, 110 pp (2012).
  • Mulkey VR, Owens VN, Lee DK. Management of switchgrass-dominated conservation reserve program lands for biomass production in South Dakota. Crop. Sci. 46(2), 712–720 (2006).
  • Shrestha RK, Lal R. Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma 161(3–4), 168–176 (2011).
  • Shrestha RK, Lal R. Soil carbon and nitrogen in 28-year-old land uses in reclaimed coal mine soils of Ohio. J. Environ. Qual. 36(6), 1775–1783 (2007).
  • Sperow M. Carbon seqnestration potential in reclaimed mine sites in seven east-central states. J. Environ. Qual. 35(4), 1428–1438 (2006).
  • Chaudhuri S, Mcdonald LM, Pena-Yewtukhiw EM, Skousen J, Roy M. Chemically stabilized soil organic carbon fractions in a reclaimed minesoil chronosequence: implications for soil carbon sequestration. Environ. Earth Sci. 70(4), 1689–1698 (2013).
  • Jacinthe P-A, Lal R. Tillage Effects on Carbon Sequestration and Microbial Biomass in Reclaimed Farmland Soils of Southwestern Indiana. Soil Sci. Soc. Am. J. 73(2), 605–613 (2009).
  • Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH. Changes in soil organic carbon under biofuel crops. Glob. Change Biol. Bioenerg. 1(1), 75–96 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.