132
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Cultural treatments for accelerated growth and flowering of Panicum virgatum

, , , &
Pages 771-780 | Received 18 Jul 2014, Accepted 01 Mar 2015, Published online: 27 Mar 2015

References

  • Searle I, Coupland G. Induction of flowering by seasonal changes in photoperiod. EMBO J. 23, 1217–1222. doi:10.1038/sj.emboj.7600117 (2004).
  • Yano M, Katayose Y, Ashikari M et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473–2483 (2000).
  • Kojima S, Takahashi Y, Kobayashi Y et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short day conditions. Plant Cell Physiol. 43, 1096–1105 (2002).
  • Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana. Annu. Rev. Plant Biol. 55, 521–535 (2004).
  • Samach A, Wigge PA. Ambient temperature perception in plants. Curr. Opin. Plant Biol. 8, 483–486 (2005).
  • Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol. Life Sci. 68, 2013–2037. doi:10.1007/s00018-011-0673-y (2011).
  • Burson B. Warm-season grasses. In: Hybridization of Crop Plants. Fehr WR, Haddley HH (Eds). ASA, Madison, WI, USA, 695–708 (1980).
  • Balasubramanian S, Sureshkumar S, Lempe J, Weigel D. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2, e106 (2006).
  • Doorenbos J. Shortening of the breeding cycle of Rhododendron. Euphytica 4, 141–146 (1955).
  • Ochatt SJ, Sangwan RS, Marget P, Ndong YA, Rancillac M, Perney P. New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed. 121, 436–440 (2002).
  • Fisher DK, Guiltinan MJ. Rapid, efficient production of homozygous transgenic tobacco plants with Agrobacterium tumefaciens: a seed-to-seed protocol. Plant Molec. Biol. Rep. 13, 278–289 (1995).
  • Kumar S, Datta KS, Nanda KK. Gibberellic acid causes flowering in the short-day plants Panicum miliaceum L., P. miliare Lamk., and Setaria italica L. Planta 134, 95–96 (1977).
  • McLaughlin SB, Kszos LA. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28, 515–535 (2005).
  • Vogel KP. Switchgrass. In: Warm-Season (C4) Grasses. Moser LE, Burson BL, Sollenberger LE (Eds). Madison, Wisconsin, USA, 561–588 (2004).
  • Mitchell RB, Moore KJ, Moser LE, Fritz JO, Redfearn DD. Predicting developmental morphology in switchgrass and big bluestem. Agron. J. 89, 827–832 (1997).
  • Benedict HM. Effect of daylength and temperature on the flowering and growth of four species of grasses. J. Agric. Res. 9, 661–671 (1940).
  • Van Esbroeck GA, Hussey MA, Sanderson MA. Variation between Alamo and Cave-in-Rock switchgrass in response to photoperiod extension. Crop. Sci. 43, 639–643 (2003).
  • Castro JC, Boe A, Lee DK. A simple system for promoting flowering of upland switchgrass in the greenhouse. Crop. Sci. 51, 2607–2614. doi:10.2135.cropsci2011.03.0142 (2011).
  • Bernier G. The flowering process as an example of plastic development. Symp. Soc. Exp. Biol. 40, 251–269 (1986).
  • Kiniry JR, Anderson LC, Johnson MVV et al. Perennial biomass grasses and the Mason-Dixon Line: comparative productivity across latitudes in the Southern Great Plains. Bioenerg. Res. 6, 276–291 (2013).
  • Moore KJ, Moser LE, Vogel KP, Waller SS, Johnson BE, Pedersen JF. Describing and quantifying growth stages of perennial forage grasses. Agron. J. 83, 1073–1077 (1991).
  • SAS Institute Inc. SAS/STAT User’s guide: Release 9.3. SAS Institute Inc., Cary, NC, USA (2012).
  • Fernandez GCJ. Design and analysis of commonly used comparative horticultural experiments. Hort. Sci. 42(5), 1052–1069 (2007).
  • Hurlbert SH. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54(2), 187–211 (1984).
  • Energy Independence and Security Act (EISA) Public Law 110-140 www.gpo.gov/fdsys/pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf (2007).
  • Sripathi R, Kakani VG, Wu Y. Genotypic variation and trait relationships for morphological and physiological traits among new switchgrass populations. Euphytica 191, 437–453. doi:10.1007/s10681-013-0911-5 (2013).
  • Martinez-Reyna JM, Vogel KP. Heterosis in switchgrass: spaced plants. Crop. Sci. 48, 1312–1320. doi:10.2135/cropsci2007.12.0695 (2008).
  • Vogel KP, Mitchell KB. Heterosis in switchgrass: biomass yield in pastures. Crop. Sci. 48, 2159–2164. doi:10.2135/cropsci2008.02.0117 (2008).
  • Hopkins AA, Vogel KP, Moore KJ, Johnson KD, Carlson IT. Genotypic variability and genotype x environment interactions among switchgrass accessions from the Midwestern USA. Crop. Sci. 35, 565–571. doi:10.2135/cropsci1995.0011183 (1995).
  • Shen Z, Parrish DJ, Wolf DD, Welbaum GE. Stratification in switchgrass seeds is reversed and hastened by drying. Crop. Sci. 41, 1546–1551 (2001).
  • Van Esbroeck GA, Hussey MA, Sanderson MA. Selection response and developmental basis for early and late panicle emergence in Alamo switchgrass. Crop. Sci. 38, 342–346 (1998).
  • Sanderson MA, Wolf DD. Morphological development of switchgrass in diverse environments. Agron. J. 87, 908–915 (1995).
  • Sanderson MA, Moore KJ. Switchgrass morphological development predicted from day of year or degree day models. Agron. J. 91, 732–734 (1999).
  • Balasko JA, Smith D. Influence of temperature and nitrogen fertilization on the growth and composition of switchgrass (Panicum virgatum L.) and timothy (Phleum pretense L.) at anthesis. Agronomy J. 63, 853–857 (1971).
  • Johnson J, Gesch R, Barbour N. Phenology and biochemical composition of switchgrass (C4) and wheat (C3) grown at contrasting temperatures. Presented at: American Society of Plant Biologists Annual Meeting. Honolulu, Hawaii, USA, July 2003.
  • Kandel TP. Response to temperature of upland and lowland cultivars of switchgrass [Thesis]. Department of Plant and Soil Sciences, Oklahoma State University, USA (2010).
  • Masiunas JB, Carpenter PL. Radicle growth of grasses and legumes in response to temperature. Hort. Sci. 19, 298–300 (1984).
  • Langridge J. Effect of day-length and gibberellic acid on the flowering time of Arabidopsis. Nature 180, 36–37 (1957).
  • Sumitomo K, Li T, Hisamatsu T. Gibberellin promotes flowering of chrysanthemum by upregulating CmFL, a chrysanthemum FLORICAULA/LEAFY homologous gene. Plant Sci. 176, 643–649. doi:10.1016/j.plantsci.2009.02.003 (2009).
  • King R, Moritz T, Evans LT, Junttila O, Herlt AJ. Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Phys. 127, 624–632 (2001).
  • Ross SD. Effects of temperature, drought, gibberellin A4/7, and timing of treatment on flowering time in potted Picea engelmannii and Picea glauca grafts. Can. J. For. Res. 18, 163–171 (1988).
  • de Zeeuw D, Leopold AC. The promotion of floral initiation by auxin. Am. J. Bot. 43(1), 47–50 (1956).
  • Nada Y. Effects of temperature on the 
growth of main tropical pasture grasses. J. Japan. Soc. Grassl. Sci. 26, 165–173 
(1980).
  • McMillan C. The role of ecotypic variation in the distribution of the central grassland of North America. Ecol. Monogr. 29, 285–308. doi:10.2307/1942132 (1959).
  • Vogel KP, Dewald CL, Gorz HJ, Haskins FA. Improvement of switchgrass, indiangrass, and eastern gamagrass – current status and future. Presented at: Symp Range Plant Improvement in Western North America. Soc Range Manag, Denver, Colorado, USA, 51–62 (1985).
  • Meilan R. Floral induction in woody angiosperms. New Forest 14, 179–202 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.