212
Views
5
CrossRef citations to date
0
Altmetric
Articles

Sulfuric acid hydrolysis of various lignocellulosic materials and its mixture in ethanol production

, , &
Pages 331-340 | Received 09 Jun 2015, Accepted 18 Oct 2015, Published online: 23 Dec 2015

References

  • Samuel R, Pu Y, Foston M, et al. Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment. Biofuels 2010;1:85–90.
  • Quintero JA, Moncada J, Cardona CA. Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: A process simulation approach. Biores. Technol. 2013;139:300–307.
  • Leskinen T, King AWT, Kilpelainen I, et al. Fractionation of lignocellulosic Materials using ionic liquids: Part 2. Effect of particle size on the mechanisms of fractionation. Ind. Eng. Chem. Res. 2013;52:3958–3965.
  • Wertheim E, Jeskey H. Introductory organic chemistry. 3rd ed. New York: McGraw-Hill Book Company Inc.
  • Rowell RM, Pettersen R, Han JS, et al. Cell wall chemistry. In: Rowell RM editor. Handbook of wood chemistry and wood composities. Boca Raton: CRC Press; 2005. p. 35–74.
  • Palmqvist E, Hagerdal BH. Fermentation of Lignocellulosic Hydrolysates. II: Inhibition and Detoxification. Biores. Technol. 2000;74:25–33.
  • Demirbas A. The importance of bioethanol and biodiesel from biomass. Energy Sour. 2008;3:177–185.
  • Taherzadeh MJ. Ethanol from Lignocellulose: Physiological Effects of Inhibitors and Fermentation Strategies, PhD Thesis. Chalmers University of Technology, Goteborg, Sweden; 1999.
  • Badger PC. Ethanol from cellulose: a general review. In: Janick J, Whipkey A, editors. Trends in New Crops and New Uses. Alexandria, VA: ASHS Press; 2002. p. 17–21.
  • Gupta R, Sharma KK, Kuhad RC. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccromyces cerevisiae and Pichia stipitis-NCIM 3498. Biores. Technol. 2009;100:1214–1220.
  • Binoj P, Sindhu R, Singhania RR, et al. Bioethanol production from rice straw: an overview. Biores. Technol. 2010;101:4767–4774.
  • Kuhad RC, Gupta R, Khasa YP, et al. Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation. Biores. Technol. 2010;101:8348–8354.
  • Rabelo S, Carrere H, Maciel Filho R, et al. Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Biores. Technol. 2011;102:1887–7895.
  • Chandel AK, Antunes FAF, Arruda PV, et al. Dilute acid hydrolysis of agro-residues for the depolymerization of hemicellulose: state-of-the-art. In: D-Xylitol: fermentative production, application and commercialization. da Silva SS, Chandel AK (Eds). Berlin Heidelberg: Springer-Verlag; 2012;39–61.
  • Njoku SI, Ahring BK, Uellendahl H. Pretreatment as the crucial step for a cellulosic ethanol biorefinery: testing the efficiency of wet explosion on different types of biomass. Biores. Technol. 2012;124:105–110.
  • Shatalov AA, Pereira H. Xylose production from giant reed (Arundo donax L.): modeling and optimization of dilute acid hydrolysis. Carbohyd. Polym. 2012;87:210–217.
  • Karimi K, Kheradmandinia S, Taherzadeh MJ. Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass Bioenergy 2006;30:247–253.
  • Duque SH, Cardona CA, Moncada J. Techno-Economic and environmental analysis of ethanol production from 10 agroindustrial residues in Colombia. Energy Fuels. in press (2015).
  • Latif F, Rajoka MI. Production of ethanol and xylitol from corn cobs by yeasts. Biores. Technol. 2001;77:57–63.
  • Govindaswamy S, Vane LM. Multi-stage continuous culture fermentation of Glucose-Xylose Mixtures to fuel ethanol using genetically engineered saccharomyces cerevisiae 424S. Biores. Technol. 2010;101:1277–1284.
  • Canettieri EV, Rocha GJM, Carvalho JA, et al. Evaluation of the kinetics of xylose formation from dilute sulfuric acid hydrolysis of forest residues of Eucalyptus grandis. Ind. Eng. Chem. Res. 2007;46:1938–1944.
  • Mosier NS, Ladish CM, Ladish MR. Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol. Bioeng. 2002;79:610–618.
  • Torget RW, Kim JS, Lee YY. Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. cellulose hydrolysis. Ind. Eng. Chem. Res. 2000;39:2817–2825.
  • Joksimovic G, Markovic Z. Investigation of the mechanism of acidic hydrolysis of cellulose. Acta Agriculturae Serbica 2007;12(24):51–57.
  • Kambu OJ. Studi Karakteristik Sampah Propinsi D.I. Yogyakarta Sebagai Alternatif Bahan Baku Dalam Produksi Etanol, Master Thesis. Universitas Gadjah mada, Yogyakarta; 2008.
  • Megawati , Sediawan WB, Hary S, et al. Pseudo-Homogenous kinetic of dilute acid hydrolysis of rice husk for ethanol production: Effect of sugar degradation. Int. J. Eng. Appl. Sci. 2010;6(6):64–69.
  • Megawati , Sediawan WB, Sulistyo H, et al. Kinetics of sequential reaction of hydrolysis and sugar degradation of rice husk in ethanol production. Biores. Technol. 2011;102:2062–2067.
  • Emerson R, Hoover A, Ray A, et al. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks. Biofuels 2015;5(3):275–291.
  • Girio FM, Fonseca C, Carvalheiro F, et al. Hemicelluloses for fuel ethanol: a review. Biores. Technol. 2010;101:4775–4800.
  • Herrera A, Tellez-Luis S, Gonzalez-Cabriales JJ, et al. Effect of hydrochloric acid concentration on the hydrolysis of sorghum straw at atmospheric pressure. J. Food Eng. 2004;63:103–109.
  • Taherzadeh MJ, Karimi K. Acid-Based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioResour. 2007;2:472–499.
  • Datta R. Energy requirements for lignocellulose pretreatment processes. Process Biochem. 1981, 16-19, 42.Demirbas A. Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sour. 2005;27:327–337.
  • Chandel AK, da Silva SS, Singh OV. Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. Bioenerg. Res. 2013;6(1):388–401.
  • Hendriks A, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Biores. Technol. 2009;100:10–18.
  • O'Brien DJ, Senske GE, Kurantz MJ, et al. Ethanol recovery from corn fiber hydrolysate fermentations by pervaporation. Biores. Technol. 2004;92:15–19.
  • Saracoglu NE, Mutlu SF, Dilmac F, et al. A comparative kinetic study of acidic hemicellulose hydrolysis in corn cob and sunflower seed hull. Biores. Technol. 1998;65:29–33.
  • Taherzadeh MJ, Niklasson C. Ethanol from Lignocellulosic Materials: Pretreatment, Acid and Ezymatic Hydrolysis and Fermentation. 3 ed. New Jersey: Prentice-Hall International, Inc; 2003. p. 6–9.
  • Demirbas A. Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sour. 2005;27:327–337.
  • Saeman JF. Kinetics of wood saccharification. Ind. Eng. Chem. 1945;37:43–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.