142
Views
9
CrossRef citations to date
0
Altmetric
Articles

Hydrotreating of non-food feedstocks over Raney nickel for the production of synthetic diesel fuel

, , &
Pages 279-287 | Received 11 Aug 2015, Accepted 10 Dec 2015, Published online: 29 Jan 2016

References

  • European Parliament and the Council of the European Union. Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union, L: Legis. 2004;52:16–62.
  • Bondioli P. The preparation of fatty acid esters by means of catalytic reactions. Top Catal. 2004;27(1–4):77–82.
  • Demirbaş A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: A survey. Energ Convers Manage. 2003;44(13):2093–2109.
  • Lotero E, Liu Y, Lopez DE, et al. Synthesis of Biodiesel via Acid Catalysis. Ind Eng Chem Res. 2005;44(14):5353–5363.
  • Taufiqurrahmi N, Bhatia S. Catalytic cracking of non-edible oils for the production of biofuels. Energ Environ Sci. 2011;4:1087–1112.
  • Ramos MJ, Fernández CM, Casas A, et al. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol. 2009;100(1):261–268.
  • Furimsky E. Catalytic hydrodeoxygenation. Appl Catal. 2000;A 199(2):147–190.
  • Stumborg M, Wong A, Hogan E. Hydroprocessed vegetable oils for diesel fuel improvement. Bioresour Technol. 1996;56(1):13–18.
  • Huber GW, O'Connor P, Corma A. Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl Catal. 2007;A 329:120–129.
  • Şenol Oİ, Viljava, T-R, Krause AOI. Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3catalysts. Catal Today. 2005;100(3–4):331–335.
  • Kubička D, Kaluža L. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal. 2010;A 372(2):199–208.
  • Zhang H, Lin H, Zheng Y. The role of cobalt and nickel in deoxygenation of vegetable oils. Appl Catal. 2014;B 160–161:415–422.
  • Kumar P, Yenumala SR, Maity SK, et al. Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: Effects of supports. Appl Catal. 2014;A 471:28–38.
  • Srifa A, Faungnawakij K, Itthibenchapong V, et al. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst. Bioresour Technol. 2014;158:81–90.
  • Donnis B, Egeberg RG, Blom P, et al. Hydroprocessing of Bio-Oils and Oxygenates to Hydrocarbons. Understanding the Reaction Routes. Top Catal. 2009;52(3):229–240.
  • Kim SK, Brand S, Lee H, et al. Production of renewable diesel by hydrotreatment of soybean oil: Effect of reaction parameters. Chem Eng J. 2013;228:114–123.
  • Studentschnig AFH, Schober S, Mittelbach M. Conversion of Crude Palm Oil into Hydrocarbons over Commercial Raney Nickel. Energy Fuels 2013;27(12):7480–7484.
  • Mikkonen S. Second-generation renewable diesel offers advantages. Hydrocarb Process. February 2008:63–66.
  • Kalnes TN, Koers KP, Marker T, et al. A Technoeconomic and Environmental Life Cycle Comparison of Green Diesel to Biodiesel and Syndiesel. Environ Prog Sustain. 2009;28(1):111–120.
  • Kikhtyanin OV, Rubanov AE, Ayupov AB, et al. Hydroconversion of sunflower oil on Pd/SAPO-31 catalyst. Fuel. 2010;89(10):3085–3092.
  • Verma D, Kumar R, Rana BS, et al. Aviation fuel production from lipids by a single-step route using hierarchical mesoporous zeolites. Energy Environ Sci. 2011;4:1667–1671.
  • Wang C, Tian Z, Wang L, et al. One-Step Hydrotreatment of Vegetable Oil to Produce High Quality Diesel-Range Alkanes. ChemSusChem. 2012;5(10):1974–1983.
  • Wang C, Liu Q, Song J, et al. High quality diesel-range alkanes production via a single-step hydrotreatment of vegetable oil over Ni/zeolite catalyst. Catal Today. 2014;234:153–160.
  • Veriansyah B, Han JY, Kim SK, et al. Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts. Fuel. 2012;94:578–585.
  • Kubičková I, Snåre M, Eränen K, et al. Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catal Today. 2005;106(1–4):197–200.
  • Lestari S, Simakova I, Tokarev A, et al. Synthesis of Biodiesel via Deoxygenation of Stearic Acid over Supported Pd/C Catalyst. Catal Lett. 2008;122(3–4):247–251.
  • Snåre M, Kubičková I, Mäki-Arvela P, et al. Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel. 2008;87(6):933–945.
  • Simakova I, Simakova O, Mäki-Arvela P, et al. Deoxygenation of palmitic and stearic acid over supported Pd catalysts: Effect of metal dispersion. Appl Catal. 2009;A 355(1–2):100–108.
  • Simakova I, Simakova O, Mäki-Arvela P, et al. Decarboxylation of fatty acids over Pd supported on mesoporous carbon. Catal Today. 2010;150(1–2):28–31.
  • Snåre M, Kubičková I, Mäki-Arvela P, et al. Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiesel. Ind Eng Chem Res. 2006;45(16):5708–5715.
  • Onyestyák G, Harnos S, Szegedi Á, et al. Sunflower oil to green diesel over Raney-type Ni-catalyst. Fuel. 2012;102:282–288.
  • Li W, Gao J, Yao S, et al. Effective deoxygenation of fatty acids over Ni(OAc)2 in the absence of H2 and solvent. Green Chem. 2015;17(8):4091–4502.
  • Peng B, Yuan X, Zhao C, et al. Stabilizing Catalytic Pathways via Redundancy: Selective Reduction of Microalgae Oil to Alkanes. J Am Chem Soc. 2012;134(22):9400–9405.
  • Yang Y, Ochoa-Hernández C, de la Peña O'Shea VA, et al. Ni2P/SBA-15 As a Hydrodeoxygenation Catalyst with Enhanced Selectivity for the Conversion of Methyl Oleate Into n-Octadecane. ACS Catal. 2012;2(4):592–598.
  • Ji N, Zhang T, Zheng M, et al. Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts. Angew Chem Int Ed. 2008;47(44):8510–8513.
  • Zhang J, Teo J, Chen X, et al. A Series of NiM (M = Ru, Rh, and Pd) Bimetallic Catalysts for Effective Lignin Hydrogenolysis in Water. ACS Catal. 2014;4(5):1574–1583
  • Cho HJ, Kim SH, Hong SW, et al. A single step non-catalytic esterification of palm fatty acid distillate (PFAD) for biodiesel production. Fuel. 2012;93:373–380.
  • Bhatti HN, Hanif MA, Qasim M, et al. Biodiesel production from waste tallow. Fuel. 2008;87(13–14):2961–2966.
  • Scholz V, Nogueira da Silva J. Prospects and risks of the use of castor oil as a fuel. Biomass Bioenerg. 2008;32(2):95–100.
  • Deutsche Gesellschaft für Fettwissenschaft e.V. (DGF). DGF C-III 4 (97). Einheitsmethoden der Deutschen Gesellschaft für Fettwissenschaft. Freie Fettsäuren. Bonn, Germany: DGF; 1997.
  • Deutsche Gesellschaft für Fettwissenschaft e.V. (DGF). DGF C-III 1a (77). Einheitsmethoden der Deutschen Gesellschaft für Fettwissenschaft. Unverseifbares (Äther-Methode). Bonn, Germany: DGF; 1977.
  • Deutsche Gesellschaft für Fettwissenschaft e.V. (DGF). DGF C-III 2 (97). Einheitsmethoden der Deutschen Gesellschaft für Fettwissenschaft. Gesamtfettsäuren. Bonn, Germany: DGF; 1997.
  • International Organization for Standardization (ISO). ISO 16931:2009. Animal and Vegetable Fats and Oils-Determination of Polymerized Triacylglycerols by High-Performance Size-Exclusion Chromatography (HPSEC). Geneva, Switzerland; ISO; 2009.
  • Deutsche Gesellschaft für Fettwissenschaft e.V. (DGF). DGF C-III 11a (84). Einheitsmethoden der Deutschen Gesellschaft für Fettwissenschaft. Unlösliche Verunreinigungen. Bonn, Germany: DGF; 1984.
  • International Organization for Standardization (ISO). ISO 20846:2011. Petroleum Products-Determination of Sulfur Content of Automotive Fuels-Ultraviolet Fluorescence Method. Geneva, Switzerland: ISO; 2011.
  • International Organization for Standardization (ISO). ISO 2097:1972. Glycerols for Industrial Use-Determination of Water Content-Karl Fischer Method; ISO: Geneva, Switzerland (1972).
  • European Committee for Standardization (CEN). EN 14107:2003. Fat and Oil Derivatives-Fatty Acid Methyl Esters (FAME)-Determination of Phosphorous Content by Inductively Coupled Plasma (ICP) Emission Spectrometry. Brussels, Belgium: CEN; (2003).
  • European Committee for Standardization (CEN). EN 14538:2006. Fat and Oil Derivatives-Fatty Acid Methyl Ester (FAME)-Determination of Ca, K, Mg and Na Content by Optical Emission Spectral Analysis with Inductively Coupled Plasma (ICP OES). Brussels, Belgium: CEN; 2006.
  • American Oil Chemists' Society (AOCS). AOCS Official Method Ce 1-62. Fatty Acid Composition by Gas Chromatography. Urbana (IL): AOCS; 1989.
  • European Committee for Standardization (CEN). EN 590:2013. Automotive Fuels-Diesel-Requirements and Test Methods. Brussels, Belgium: CEN; 2013.
  • International Organization for Standardization (ISO). ISO 3924:2010. Petroleum Products-Determination of Boiling Range Distribution-Gas Chromatography Method. Geneva, Switzerland: ISO; 2010.
  • Meller E, Green U, Aizenshtat Z, et al. Catalytic deoxygenation of castor oil over Pd/C for the production of cost effective biofuel. Fuel. 2014;133:89–95.
  • Shuikin NI, Cherkashin MI, Aizenshtat Z, et al. Selective demethylation of n-alkanes over a skeletal nickel-aluminum catalyst. Russ Chem Bull. 1957;6(7):907–909.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.