285
Views
14
CrossRef citations to date
0
Altmetric
Articles

Complementing existing CHP plants using biomass for production of hydrogen and burning the residual gas in a CHP boiler

, ORCID Icon &
Pages 675-683 | Received 27 Sep 2015, Accepted 05 Feb 2016, Published online: 19 Apr 2016

References

  • Dvorak M, Havel P. Combined heat and power production planning under liberalized market conditions. Appl. Therm. Eng. 2013;43:163–73.
  • Pruitt KA, Braun RJ, Newman AM. Establishing conditions for the economic viability of fuel cell-based, combined heat and power distributed generation systems. Appl. Energ. 2013;111:904–920.
  • Fragaki A, Andersen AN, Toke D. Exploration of economical sizing of gas engine and thermal store for combined heat and power plants in the UK. Energy 2008;33:1659–70.
  • Ghadimi P, Kara S, Kornfeld B. The optimal selection of on-site CHP systems through integrated sizing and operational strategy. Appl. Energ. 2014;126:38–46.
  • Parvez M. Energy and exergy analyses of a biomass integrated gasification cogeneration system for combined production of power and refrigeration. Biofuels 2015;6:369–376.
  • Lythcke-JØrgensen C, Haglind F, Clausen LR. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production. Energ. Convers. Manage. 2014;85:817–827.
  • Mckechnie J, Zhang Y, Ogino A, et al. Impacts of co-location, co-production, and process energy source on life cycle energy use and greenhouse gas emissions of lignocellulosic ethanol. Biofuels, Bioproducts and Biorefining 2011;5:279–292.
  • Peduzzi E, Boissonnet G, Haarlemmer G, et al. Torrefaction modelling for lignocellulosic biomass conversion processes. Energy 2014;70:58–67.
  • Yang C, Ogden J. Determining the lowest-cost hydrogen delivery mode. Int. J. Hydrogen Energ. 2007;32:268–286.
  • Göteborg Energi; 2014. GoBiGas. Available from http://gobigas.goteborgenergi.se/Svensk_version/Om_GoBiGas (Accessed 9 April 2015).
  • Larsson EK, Dahlquist E. Separation of Methane. Västerås: Mälardalen University Press; 2013.
  • Larsson A. Fuel conversion in a dual fluidized bed gasifier - experimental quantification and impact on performance. Gothenburg: Doctoral thesis, Chalmers University of Technology, ISBN: 978-91-7597-074-5 (2014).
  • Gussing Renewable Energy. Available from http://gussingrenewable.com/htcms/en/press/press-downloads.html (Accessed 24 May 2015).
  • Hofbauer H, Rauch R. Stoichiometric Water Consumption of Steam Gasification by the FICFB-Gasification Process, Vienna; 2000.
  • Hofbauer H. et al. Steam Gasification of Biomass at CHP Plant Guessing - Status of the Demonstration Plant, Vienna; 2004.
  • Hofbauer H. et al. Six years experience with the FICB-gasification process. Vienna: Institutet för jordbruks- och miljöteknik; 2012. Available from http://www.bioenergiportalen.se/?p=1453&m=924 (Accessed 3 April 2015).
  • Koppatz S. et al. H rich product gas by steam gasification of biomass with in situ COabsorbtion in a dual fluidized bed system of 8 MW fuel input. Fuel Process. Technol. 2009;90:914–921.
  • Larsson A, Seemann M, Neves D, et al. Evaluation of Performance of Industrial-Scale Dual Fluidized Bed Gasifiers Using the Chalmers 2-4-MWth Gasifier. Energy Fuels 2013;27:6665–80.
  • Naqvi M, Yan J. Bio-refinery: Production of biofuel, heat, and power utilizing biomass. In: Handbook on Clean Energy Systems. John Wiley & Sons; 2015. ISBN: 978-1-118-38858-7.
  • Bauer F, Hulteberg C, Persson T, et al. Biogas upgrading - Review of commercial technologies. Malmö: Svenskt Gastekniskt Center AB, SGC; 2013.
  • Dodds PE. et al. Hydrogen and fuel cell technologies for heating: A review. Int. J. Hydrogen Energ. 2015;40(5):2065–83.
  • Asadullah M. Biomass gasification gas cleaning for downstream applications: A comparative critical review. Renewable and Sustainable Energy Reviews 2014;40:118–132.
  • Molino A. et al. Electricity production by biomass steam gasification using a high efficiency technology and low environmental impact. Fuel 2012;103:179–192.
  • Milne TA, Evans RJ, Abatzoglou N. Biomass gasifier “Tars”: Their nature, formation, and conversion. Golden, Colorado: National Renewable Energy Laboratory; 1998.
  • Nakamura S, Unyaphan S, Yoshikawa K, et al. Tar removal performance of bio-oil scrubber for biomass gasification. Biofuels 2014;5(6):597–606.
  • Dahlquist E, Jones A. Presentation of a dry black liquor gasification process with direct caustization. TAPPI J. 2005;4:15–19.
  • Naqvi M, Yan J, Dahlquist E. Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO2 capture. Bioresource Technol. 2012;110:637–44.
  • Naqvi M, Yan J, Dahlquist E. System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems. Appl. Energ. 2013;112:1275–82.
  • Naqvi M, Yan J, Dahlquist E. Synthetic natural gas (SNG) production at pulp mills from a circulating fluidized bed black liquor gasification process with direct causticization. In Proceedings: 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, ECOS 2010, Lausanne, Switzerland, 14-17 June 2010.
  • Naqvi S, Uemura Y, Yusup S, et al. The role of zeolite structure and acidity in catalytic deoxygenation of biomass pyrolysis vapors. Energy Procedia 2015;75:793–800.
  • Rong A, Lahdelma R. Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints. Renewable and Sustainable Energy Reviews 2016;53:363–372.
  • Lahti Energia. Available from http://www.lahtigasification.com (Accessed 12 August 2015)
  • UBE America Inc. Available from https://www.ube.com/content.php?pageid=135 (Accessed 24 May 2015)
  • Baker R, Lokhandwala K. Natural Gas Processing with Membranes: An Overview. Industrial & Engineering Chemistry Research 2008;47(7):2109–2121.
  • Drioli E, Barbieri G. Membrane engineering for the treatment of gases: Volume 2: Gas-separation problems combined with membrane reactors. 2011 ISBN: 978-1-84973-239-0.
  • Ryckebosch E, Drouillon M, Vervaeren H. Techniques for transformation of biogas to biomethane. Biomass and Bioenergy 2011;35(5):1633–1645.
  • Harasimowicz M, Orluk P, Zakrzewska-Trznadel G, et al. Application of polyimide membranes for biogas purification and enrichment. Poland: Warsaw University of Technology; 2007.
  • Lv Y, Yu X, Jia J, et al. Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption. Appl. Energ. 2012;90(1):167–174.
  • Yuexia L, Yua X, Tu S, et al. Wetting of polypropylene hollow fiber membrane contactors. J. Membrane Sci. 2010;362:444–452.
  • Mälarenergi. Technical data on biomass-fired boiler 5 at Malarenergi AB. 2015. Available from https://www.malarenergi.se (Accessed 11 May 2015).
  • Ekbom T, Berglin N, Lögdberg S. Black liquor gasification with motor fuel production- BLGMF II. – A techno-economic feasibility study on catalytic Fischer-Tropsch synthesis for synthetic diesel production in comparison with methanol and DME as transport fuels. 2005. Available from http://www.chemrec.se/admin/UploadFile.aspx?path=/UserUploadFiles/2005%20BLGMF%20II.pdf (Accessed 20 September 2015)
  • Chemical engineering plant cost index (CEPCI). 2014. Available from http://www.isr.umd.edu/∼adomaiti/chbe446/literature/ChECostIndexJan2015.pdf (Accessed 15 September 2015)
  • Saur G, Ainscough C. U.S. geographic analysis of the cost of hydrogen from electrolysis. Dec 2011.NREL/TP-5600-52640. Available from http://www.nrel.gov/hydrogen/production_cost_analysis.html (Acccessed September 19, 2015).
  • Danish M, Naqvi M, Farooq U, et al. Characterization of South Asian agricultural residues for potential utilization in future energy mix. Energy Procedia 2015;75:2974–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.