518
Views
21
CrossRef citations to date
0
Altmetric
Articles

Recent progress on transforming crude glycerol into high value chemicals: a critical review

, , &
Pages 309-314 | Received 24 Aug 2015, Accepted 29 Mar 2016, Published online: 04 May 2016

References

  • André L, Hemming A, Adler L. Osmoregulation in Saccharomyces cervisiae. Studies on the osmotic induction of glycerol production and glycerol-3-phosphate dehydrogenase (NAD+). FEBS Lett. 1991;286(1-2):13–17.
  • Agarwal GP. Glycerol. Adv Biochem Eng Biotechnol. 1990;41:95–128.
  • Sivasankaran C, Ramanujam P, Shanmugam S, et al. Comparative study on Candida sp for the production glycerol. Int. J of Chemtech Research. 2014;6:5058–5063.
  • Solomon BO, Zeng AP, Biebl H, et al. Comparison of the energetic efficiency of hydrogen and oxychemicals formation in Klebsiella pneumonia and Clostridium butyricum during anaerobic growth on glycerol. J Biotechnol. 1995;39:107–17.
  • Barbirato F, Bories A. Relationship between physiology of Enterobacter agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions. Res Microbiol. 1997;148:475–84.
  • Colin T, Bories A, Lavigne C, et al. Effect of acetate and butyrate during glycerol fermentation by Clostridium butyricim. Curr Microbiol. 2001;43:238–43.
  • Chozhavendhan S, Praveen Kumar R, Sivagami U, et al. A survey on DHA production by microbial bioconversion of crude glycerol. Int J of Applied Engineering Research. 2015;10(13):11784–1179011.
  • Deckwer WD. Microbial conversion of glycerol to 1, 3 propanediol. FEMS Microbial Rev. 1995;16:143–49.
  • Papanikalaou S, Minigila L, Chevalot I, et al. Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol. 2002;77:191–208.
  • Mu Y, Teng H, Zhang DJ, et al. Microbial production of 1, 3 propanediol by Klebsiella pneumoniae using crude glycerol biodiesel preparation. Biotechol Lett. 2006;28:1755–59.
  • Willke TH, Vorlop KD. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbol Biotechol. 2004;66:131–142.
  • Dhmaadi Y, Murarka A, Gonzalez R. Anaerobic fermentation of glycerol by E.coli; a new platform for metabolic engineering. Biotchol Bioeng. 2006;94:821–829.
  • Metsoviti M, Paramithiotis S, Drosinos Eh, et al. Screening of bacterial strain capable of converting biodiesel- dervied raw glycerol into 1, 3 propanediol, 2, 3 butanediol and ethanol. Eng Life Sci. 2012a;12:57–68.
  • Samul D, Leja K, Grajek W. Impurities of crude glycerol and their effect on metabolite production. Ann Microbiol. 2014;4:891–898.
  • Saifuddin M, Nomanbhay, RH. Immobilization of E.coli mutant strain for efficient production of bioethanol from crude glycerol. J of Applied Sciences. 2015;15:415–430.
  • Menzel K, Zeng AP, Deckwer WD. High concentration and productivity of 1, 3 propanediol from continuous fermentation of glycerol by klebsiella pneumoniae. Enzyme Microbiol Technol. 1997a;20:82–86.
  • Dobson R, Gray V, Rumbold K. Microbial utilization of crude glycerol for the production of value added products. Journal of Ind Microbiol and Biotechnol. 2011;39:217–226.
  • Zeng AP, Sabra W. Microbial production of diols as platform chemicals: recent progress. Curr opinion in Biotechnology. 2011;22:749–757.
  • Pagliaro M, Rossi M. Glycerol: properties and production. In: Pagliaro M, Rossi M, editors. The future of glycerol. 2. London: The Royal Society of Chemistry; 2010. p. 1–28.
  • Ngo TA, Kim MS, Sim SJ. High-yield biohydrogen production from biodiesel manufacturing waste by Thermo toganeapolitana. Int J Hydrogen Energy. 2011;36:5836–5842.
  • Ying M, Hu T, Zhang DJ, et al. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett. 2006;28:1755e9.
  • Marques PASS, Bartolomeu ML, Thomas MM, et al. Biohydrogen production from glycerol by a strain of Enterobacter aerogenes. Hypothesis VIII 2009. Proceeding VIII; April 1–3; Lisban, Portugal; 2009.
  • Johnson DT, Taconi KA. The glycerin glut: option for the value added conversion of crude glycerol resulting from bio-diesel production. Environ Prog. 2007;26:338–48.
  • Escapa A, Manuel MF, Moran A, et al. Hydrogen production from glycerol in a membrane less microbial electrolysis cell. Energy Fuels. 2009;23:4612–4618.
  • Pagliaro M, Cirminna R, Kimura H, et al. From glycerol to value added products. Angew Chem Int Ed Engl. 2007;46:4434–4440.
  • Zhanyou C, Denver P, Zhiyou W, et al. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Proce Biochem. 2007;42:1537–1545.
  • Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl. Energy. 2010;87:1083–1095.
  • Vasudevan PT, Briggs M. Biodiesel production-current state if the art and challenges. J Ind Microbiol Biotechnol. 2008;35:421–430.
  • Sneha KA, Rafael AG, Zhiyou W. Use of biodiesel-derived crude glycerol for producing Eicosapentaenoic acid (EPA) by the fungus Pythiumir regular. J Agric Food Chem. 2009;57(7):2739.
  • Amaral PF, Ferreira TF, Fontes GC, et al. Glycerol valorization: new biotechnological route. Food Bioprod Proc. 2009;87:179–186.
  • da Silva GP, Mack m, Contiero J. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv. 2009;27:30–39.
  • Denver JP, Rafael AG, Zhiyou W. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem. 2008;56(11):3933–3939.
  • Shannon E, Kevin W, David V, et al. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol. 2011;102:88–93.
  • Chi Z, Pyle D, Wen Z, et al. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem. 2007;42:1837–1545.
  • Bruce EL, Douglas C, Cheng S, et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Env Sci Technol. 2008;42(23):8630–8640.
  • Van Gerpen J. Biodiesel processing and production. Fuel Process Technol. 2005;86:1097–1107.
  • Chiu CW, Goff MJ, Suppes GJ. Distribution of methanol and catalysts between biodiesel and glycerol. AIChE J. 2005;51(4):1274–1278.
  • Singhabhandhu A, Tezuka T. A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock. Energy. 2010;35:2493–2504.
  • André A, Diamantopoulou P, Philippoussis A, et al. Biotechnological conversions of bio- diesel derived water glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crop Prod 2010;31:407–416.
  • Chatzifragkou A, Makri A, Belka A, et al. Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy. 2011a;36:1097–1108.
  • Chatzifragkou A, Papanikolaou S, Dietz D, et al. Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl Microbiol Biotechnol. 2011b;91:101–115.
  • Hetmat D, Bauer R, Fricke J. Optimazation of the microbial synthesis of dihydroxy acetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst Eng. 2003;26:109–116.
  • Bauer R, katsikis N, Varga S, et al. Study of inhibitory effect of the product dihydoxyacetone on in a semicontious two- stage repeated fed- batch process. Bioprocess Biosyt Eng. 2005;5:37–43.
  • Flickinger MC, Perlman D. Application of oxygen- enriched aeration in the conversion of glycerol to dihydoxyacetone by Gluconobacter melangenus IFO 3293. Appl Env Microbiol. 1997;33:706–12.
  • Nabe K, Nobuhiko I, Yamada S, et al. Conversion of glycerol to dihydoxyacetone by immobilized whole cell of Acetobacter xylinum. Appl Env Microbiol. 1983;46:454–459.
  • Ciriminna R, Palmisano G, Pina CD, et al. One -pot electrocatalytic oxidation of glycerol to DHA. Tetrahedaron Letter. 2006;47:6993–6995.
  • Zeikus JG, Jain MK, Elankovan P. Biotechnology of succinic acid production and markets for the dervied industrial products. Appl Microbial Biotechnol. 1999;51:545–552.
  • Lee SY, Hong SH, park SJ. Fermentative production of chemicals that can be used for polymer synthesis. Macromol Biosci. 2004;4:157–164.
  • Song H Lee SY. Production of succinic acid by bacterial fermentation. Enzyme Microbol Technol. 2006;39:352–61.
  • Rywinska A, Rymowicz W. High yield production of citric acid by Yarrowia lipolytica on glycerolin repeated-batch bioreactor’. Journal Ind Microbiol Biotechnol. 2010;37:431–435.
  • Fan X, Burton R, Zhou Y. Glycerol 9byproduct from biodiesel production) as a source for fuels and chemicals- mini review. Open Fuels Energy Sci J. 2010;3:17–22.
  • Rymowicz W, Rywińska A, Żarowska B, et al. Citric acid production by acetate mutants of Yarrowia lipolytica. Chem Pap. 2006;60(5):391–394.
  • Imandi SB, Bandaru VVR, Somalanka SR, et al. Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design. Enzyme Microb Technol. 2007;40:1367–1372.
  • Kamzolova SV, Fatykhova AR, Dedyukhina EG, et al. Citric acid production by yeast grown on glycerol-containing waste from biodiesel industry. Food Technol Biotechnol. 2011;49:65–74.
  • Rywińska A, Rymowicz W, Żarowska B, et al. Biosynthesis of citric acid from glycerol by acetate mutants of Yarrowia lipolytica in fed-batch fermentation. Food Technol Biotechnol. 2009;41(1):1–6.
  • Musiał I, Rymowicz W. Biodiesel by-products used as substrates for oxalic acid production by Aspergillus niger. In: Aggelis G, editor. Microbial conversions of raw glycerol. NewYork: Nova Science; 2009. p. 31–40.
  • Saxena RK, Anand P, Saran S, et al. Microbial productoin of 1, 3 propenadiol: recent developments and emerging opportunities. Biotechnol Adv. 2009;27:895–913.
  • Gonazalez- Pajuelo M, Andrade JC, Vasconcelous I. 1,3 Propanediol by Clostriium butyricum VPI 3266 using a synthetic medium and a raw glycerol. J Ind Microbol Biotechnol. 2004;31:442–46.
  • Reimann A, Biebl H, Deckwer WD. Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl Microbiol Biotechnol. 1998;49:359–363.
  • Hirschmann S, Baganz K, Koschik I, et al. Development of an integrated bioconversion process for the production of 1, 3 propanediol from raw glycerol waters. Landbauforsch Volk. 2005;55:261–267.
  • Homann T, Tag C, Biebl H, et al. Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol. 1990;53:435–440.
  • Petitdemange E, Dürr C, AbbadAndaloussi S, et al. Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol. 1995;15:498–502.
  • Chatzifragkou A, Aggelis G, Komaits M, et al. Impact of anaerobiosis strategy and bioreactor geometry on the biochemical response of Clostridium butyricum VPI 1718 during 1,3-propanediol fermentation. Bioresource Technol. 2011c;102:10625–10632.
  • Jun S, Moon C, Kang C, et al. Microbial fed- Batch production of 1, 3 Propanediol production using raw glycerol with suspended and immobilized I Klebsiella pneumoniae. Appl Biochem Biotechnol. 2010;161:491–501.
  • Moon C, Ahn JH, Kim SW, et al. Effect of biodiesel derived raw glycerol on 1,3-propanediol production by different microorganisms. Appl Biochem Biotechnol. 2010;161:502–510.
  • Venkataramanan KP, Boatman JJ, Kurniawan Y, et al. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl Microbiol Biotechnol. 2012;93:1325–1335.
  • Anand P, Saxena RK. A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1, 3-propanediol production from Citrobacter freundii. New Biotechnol. 2011;29(2):199–205.
  • Choi WJ, Hartono MR, Chan WH, et al. Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl Microbiol Biotechnol. 2011;89:1255–1264.
  • Ito T, Nakashimada Y, Senba K, et al. Hydrogen and ethanol production from glycerol-containing wastes dis-charged after biodiesel manufacturing process. J Biosci Bioeng. 2005;100:260–265.
  • Stasiak-Rozanska L, Stanisław B. Production of dihydroxyacetone from an aqueous solution of glycerol in the reaction catalyzed by an immobilized cell preparation of acetic acid bacteria Gluconobacteroxydans ATCC 621. Eur Food Res Technol. 2012;235:1125–1132.
  • Hu ZC, Liu ZQ, Zheng YG, et al. Production of 1, 3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112. J. Microbiol Biotechnol. 2012;20(2):340–345( 2010).
  • Ling X, Guo J, Liu X, et al. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310. Bioresour Technol. 2015;184:139–147.
  • Yokochi T, Honda D, Higashihara T, et al. Optimization of docosahexaenoic acid production by Schizochytrium limacinumSR21. Appl. Microbiol. Biot. 1998;49(1):72–76.
  • Song H, Lee SY. A review: production of succinic acid by bacterial fermentation. Enzyme Microb. Tech. 2006;39:352–361.
  • Liu Y-P, Zheng P, Sun Z-H, et al. Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresource Technol. 2008;99(6):1736–1742.
  • Auta HS, Abidoye KT, Tahir H, et al. Sesan Abiodun Aransiola Citric Acid Production by Aspergillusniger Cultivated on Parkiabiglobosa Fruit Pulp International Scholarly Research Notices Volume 2014. Article ID 762021, P 8; 2014.
  • Metsoviti M, Zeng A-P, Koutinas AA, et al. Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J Biotechnol 7. 2013;163(4):408–418.
  • Drożdżyńska A, Leja K, Czaczyk K. Biotechnological production of 1,3-Propanediol from crude glycerol. Journal of Biotechnology, Computational Biology and Bio nanotechnology. 2011;92(1):92–100.
  • Szymanowska-Powa D. 1,3-Propanediol production from crude glycerol by Clostridium butyricum DSP1 in repeated batch. Electron J Biotechnol. 2014;17:(6) 322–328.
  • Mattam AJ, Clomburg JM, Gonzalez R, et al. Fermentation of glycerol and production of valuable chemical and biofuel molecules. Biotechnol Lett. 2013;35:831–842.
  • Gonçalves FA, Sanjinez-Argandona EJ, Fonseca GG. Cellulosic ethanol and its co-products from different substrates, pretreatments and Microorganism bioprocesses: a review. Nat Sci. 2013;5(5):624–630.
  • Yu KO, Kim SW, Han SO. Engineering of glycerol Utilization pathway for ethanol production by Saccharomyces cerevisiae. Bioresource Technol. 2010;101:114157–114161.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.