537
Views
14
CrossRef citations to date
0
Altmetric
Articles

Production of bio-oil from oil palm empty fruit bunch by catalytic fast pyrolysis: a review

, , &
Pages 647-660 | Received 31 Dec 2015, Accepted 31 Mar 2016, Published online: 31 May 2016

References

  • Höök M, Tang X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy. 2013;52:797–809, .
  • Tye YY, Lee KT, Wan Abdullah WN, et al. Second-generation bioethanol as a sustainable energy source in Malaysia transportation sector: Status, potential and future prospects. Renew Sustain Energy Rev. 2011;15(9):4521–4536.
  • Guglielmo. On Prediction of depreciation time of fossil fuel in Malaysia. J Math Stat. 2012;8(1):136–143.
  • Venderbosch R, Prins W. Fast pyrolysis technology development. Biofuels Bioprod. Biorefining. 2010;4(2):178–208.
  • Chang SH. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenergy. 2014;62:174–181.
  • Shen D, Jin W, Hu J, et al. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: Structures, pathways and interactions. Renew Sustain Energy Rev. 2015;51:761–774.
  • Shen D, Xiao R, Gu S, et al. The pyrolytic behavior of cellulose in lignocellulosic biomass: a review. Rsc Adv. 2011;1(9):1641.
  • Collard F-X, Blin J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev. 2014;38:594–608.
  • Eronen P, Österberg M, Heikkinen S, et al. Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr. Polym. 2011;86(3):1281–1290.
  • Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–1788.
  • Hassan A, Salema AA, Ani FN, et al. A review on oil palm empty fruit bunch fiber-reinforced polymer composite materials. Polym Compos. 2010;31(12):2079–2101.
  • Shinoj S, Visvanathan R, Panigrahi S, et al. Oil palm fiber (OPF) and its composites: A review. Ind Crops Prod. 2011;33(1):7–22.
  • Abdullah N, Sulaiman F, Gerhauser H. Characterisation of oil palm empty fruit bunches for fuel application. J Phys Sci. 2011;22(1):1–24.
  • Kim JS, Lee YY, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol. 2016;199:42–48.
  • Coral Medina JD, Woiciechowski A, Zandona Filho A, et al. Lignin preparation from oil palm empty fruit bunches by sequential acid/alkaline treatment – A biorefinery approach. Bioresour Technol. 2015;194:172–178.
  • Pereira SC, Maehara L, Machado CMM, et al. Physical–chemical–morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques. Renew Energy. 2016;87:607–617.
  • Khalil HSA, Alwani MS, Omar AKM. Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources. 2007;1(2):220–232.
  • Ullah K, Kumar Sharma V, Dhingra S, et al. Assessing the lignocellulosic biomass resources potential in developing countries: A critical review. Renew Sustain Energy Rev. 2015;51:682–698.
  • Geng A. Conversion of oil palm empty fruit bunch to biofuels. In: Fang Z, editor. Liquid, gaseous and solid biofuels – conversion techniques. InTech; 2013. Available from: http://www.intechopen.com/books/liquid-gaseous-and-solid-biofuels-conversion-techniques/conversion-of-oil-palm-empty-fruit-bunch-to-biofuels
  • Zheng Y, Zhao J, Xu F, et al. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci. 2014;42:35–53.
  • Stamatelatou K, Antonopoulou G, Ntaikou I, et al. The effect of physical, chemical, and biological pretreatments of biomass on its anaerobic digestibility and biogas production. In: Mudhoo A, editor. Biogas production. John Wiley & Sons, Inc.; 2012. p. 55–90.
  • Asadieraghi M, Daud WMAW. In-depth investigation on thermochemical characteristics of palm oil biomasses as potential biofuel sources. J Anal Appl Pyrolysis. 2015;115:379–391.
  • Alias NB, Ibrahim N, Hamid MKA. Pyrolysis of Empty Fruit Bunch by Thermogravimetric Analysis. Energy Procedia. 2014;61:2532–2536.
  • Yuan T, Tahmasebi A, Yu J. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Bioresour. Technol. 2015;175:333–341.
  • López-González D, Fernandez-Lopez M, Valverde JL, et al. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. Bioresour Technol. 2013;143:562–574.
  • Monteiro SN, Calado V, Margem FM, et al. Thermogravimetric stability behaviour of less common lignocellulosic fibers - A review. J Mater Res Tecnol. 2012;:189–199.
  • Branca C, Albano A, Di Blasi C. Critical evaluation of global mechanisms of wood devolatilization. Thermochim. Acta. 2005;429(2):133–141.
  • Jönsson LJ, Martín C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–112.
  • Hu F, Ragauskas A. Pretreatment and Lignocellulosic Chemistry. Bioenergy Res. 2012;5(4):1043–1066.
  • Rabemanolontsoa H and Saka S. Various pretreatments of lignocellulosics. Bioresour Technol. 2016;199:83–91.
  • Brodeur G, Yau E, Badal K, et al.. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review. Enzyme Res. 2011;2011:1–17.
  • Misson M, Haron R, Kamaroddin MFA, et al. Pretreatment of empty palm fruit bunch for production of chemicals via catalytic pyrolysis. Bioresour Technol. 2009;100(11):2867–2873.
  • Amin NA, Ya'aini N, Misson M, et al. Pre-treatment of empty fruit bunch for biofuel production. J Energy Environ. 2013;3(1):18–22.
  • Zhuang X, Wang W, Yu Q, et al. Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol. 2016;199:68–75.
  • Yu Q, Zhuang X, Yuan Z, et al. Step-change flow rate liquid hot water pretreatment of sweet sorghum bagasse for enhancement of total sugars recovery. Appl Energy. 2011;88(7):2472–2479.
  • Yu Q, Zhuang X, Yuan Z, et al. Pretreatment of sugarcane bagasse with liquid hot water and aqueous ammonia. Bioresour Technol. 2013;144:210–215.
  • Li H, Qu Y, Yang Y, et al. Microwave irradiation – A green and efficient way to pretreat biomass. Bioresour Technol. 2016;199:34–41.
  • Medina JDC, Woiciechowski A, Filho AZ, et al. Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: A biorefinery approach. Bioresour Technol. 2016;199:173–180.
  • Baharuddin AS, Sulaiman A, Kim DH, et al. Selective component degradation of oil palm empty fruit bunches (OPEFB) using high-pressure steam. Biomass Bioenergy. 2013;55:268–275.
  • Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass – An overview. Bioresour Technol. 2016;199:76–82.
  • Chaturvedi V, Verma P. An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech. 2013;3(5):415–431.
  • Harmini S, Hutomo MD, Bahruddin L, et al. Fungal pretreatment of oil palm empty fruit bunch: effect of manganese and nitrogen. Cellul Chem Nd Technol. 2012;47(9–10):751–757.
  • Radlein D, Quignard A. A Short Historical Review of Fast Pyrolysis of Biomass. Oil Gas Sci Technol – Rev D'ifp Energies Nouv. 2013;68(4):765–783.
  • Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.
  • Anca-Couce A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci. 2016;53:41–79.
  • Seshadri V, Westmoreland PR. Concerted Reactions and Mechanism of Glucose Pyrolysis and Implications for Cellulose Kinetics. J Phys Chem A. 2012;116(49):11997–12013.
  • Banyasz JL, Li S, Lyons-Hart JL, et al. Cellulose pyrolysis: the kinetics of hydroxyacetaldehyde evolution. J Anal Appl Pyrolysis. 2001;57(2):223–248.
  • Banyasz JL, Li S, Lyons-Hart J, et al. Gas evolution and the mechanism of cellulose pyrolysis. Fuel. 2001;80(12):1757–1763.
  • Mellin P, Kantarelis E, Yang W. Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme. Fuel. 2014;117:704–715.
  • Bai X, Brown RC. Modeling the physiochemistry of levoglucosan during cellulose pyrolysis. J Anal Appl Pyrolysis. 2014;105:363–368.
  • Anca-Couce A, Mehrabian R, Scharler R, et al. Kinetic scheme of biomass pyrolysis considering secondary charring reactions. Energy Convers Manag. 2014;87:687–696.
  • Ranzi E, Cuoci A, Faravelli T, et al. Chemical Kinetics of Biomass Pyrolysis. Energy Fuels. 2008;22(6):4292–4300.
  • Sharma A, Pareek V, Zhang D. Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renew Sustain Energy Rev. 2015;50:1081–1096.
  • Di Blasi C, Lanzetta M. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere. J Anal Appl Pyrolysis. 1997;40–41:287–303.
  • Faravelli T, Frassoldati A, Barker Hemings E, et al. Multistep Kinetic Model of Biomass Pyrolysis. In: Battin-Leclerc F, Simmie JM, Blurock E, Editors. Cleaner combustion. London: Springer London; 2013. p. 111–139.
  • Shen DK, Gu S, Bridgwater AV. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J Anal Appl Pyrolysis. 2010;87(2):199–206.
  • Custodis VBF, Hemberger P, Ma Z, et al. Mechanism of Fast Pyrolysis of Lignin: Studying Model Compounds. J Phys Chem B. 2014;118(29):8524–8531.
  • Mohan D, Pittman CU, Steele PH. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energ Fuels. 2006;20(3):848–889.
  • Li C, Zhao X, Wang A, et al. Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev. 2015;115(21):11559–11624.
  • Mullen CA, Boateng AA. Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process Technol. 2010;91(11):1446–1458.
  • Park WC, Atreya A, Baum HR. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust Flame. 2010;157(3):481–494.
  • Shen J, Wang X-S, Garcia-Perez M, et al. Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel. 2009;88(10):1810–1817.
  • Sembiring KC, Rinaldi N, Simanungkalit SP. Bio-oil from Fast Pyrolysis of Empty Fruit Bunch at Various Temperature. Energy Procedia. 2015;65:162–169.
  • Abdullah N, Bridgwater AV. Pyrolysis liquid derived from oil palm empty fruit bunches. J Phys Sci. 2006;17(2):117–129.
  • Custodis VBF, Bährle C, Vogel F, et al. Phenols and aromatics from fast pyrolysis of variously prepared lignins from hard- and softwoods. J Anal Appl Pyrolysis. 2015;115:214–223.
  • Sulaiman F, Abdullah N. Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches. Energy. 2011;36(5):2352–2359.
  • Onay O, Kockar OM. Slow, fast and flash pyrolysis of rapeseed. Renew Energy. 2003;28(15):2417–2433.
  • Abdullah N, Gerhauser H, Sulaiman F. Fast pyrolysis of empty fruit bunches. Fuel. 2010;89(8):2166–2169.
  • Abdullah N, Gerhauser H. Bio-oil derived from empty fruit bunches. Fuel. 2008;87(12):2606–2613.
  • Zhang L, Liu R, Yin R, et al. Upgrading of bio-oil from biomass fast pyrolysis in China: A review. Renew Sustain Energy Rev. 2013;24:66–72.
  • Aho A, Kumar N, Eränen K, et al. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure. Fuel. 2008;87(12):2493–2501.
  • Stefanidis SD, Kalogiannis KG, Iliopoulou EF, et al. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis. 2014;105:143–150.
  • Lu Q, Li W-Z, Zhu X-F. Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers. Manag. 2009;50(5):1376–1383.
  • Venderbosch RH. A critical view on catalytic pyrolysis of biomass. ChemSusChem. 2015;8(8):1306–1316.
  • Yin R, Zhang L, Liu R, et al. Optimization of composite additives for improving stability of bio-oils. Fuel. 2016;170:1–8.
  • Krutof A, Hawboldt K. Blends of pyrolysis oil, petroleum, and other bio-based fuels: A review. Renew Sustain Energy Rev. 2016;59:406–419.
  • Xiu S Shahbazi A. Bio-oil production and upgrading research: A review. Renew Sustain Energy Rev. 2012;16(7):4406–4414.
  • Lehto J, Oasmaa A, Solantausta Y, et al. Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass. Appl Energy. 2014;116:178–190.
  • Yang Z, Kumar A, Huhnke RL. Review of recent developments to improve storage and transportation stability of bio-oil. Renew Sustain Energy Rev. 2015;50:859–870.
  • Dickerson T, Soria J. Catalytic fast pyrolysis: A review. Energies. 2013;6(1):514–538.
  • Suib SL, New and future developments in catalysis: catalytic biomass conversion. Newnes: Elsevier; 2013.
  • Galadima A, Muraza O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review. Energy Convers Manag 2015;105:338–354.
  • Tan S, Zhang Z, Sun J, et al. Recent progress of catalytic pyrolysis of biomass by HZSM-5. Chin J Catal. 2013;34(4):641–650.
  • Kim J-Y, Lee JH, Park J, et al. Catalytic pyrolysis of lignin over HZSM-5 catalysts: Effect of various parameters on the production of aromatic hydrocarbon. J Anal Appl Pyrolysis. 2015;114:273–280.
  • Zheng A, Zhao Z, Chang S, et al. Effect of crystal size of ZSM-5 on the aromatic yield and selectivity from catalytic fast pyrolysis of biomass. J Mol Catal Chem. 2014;383–384:23–30.
  • Mihalcik DJ, Mullen CA, Boateng AA. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J Anal Appl Pyrolysis. 2011;92(1):224–232.
  • Vitolo S, Seggiani M, Frediani P, et al. Catalytic upgrading of pyrolytic oils to fuel over different zeolites. Fuel. 1999;78(10):1147–1159.
  • Liu C, Wang H, Karim AM, et al. Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev. 2014;43(22):7594–7623.
  • Jae J, Tompsett GA, Foster AJ, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal. 2011;279(2):257–268.
  • Woolery GL, Kuehl GH, Timken HC, et al. On the nature of framework Brønsted and Lewis acid sites in ZSM-5. Zeolites. 1997;19(4):288–296.
  • Iliopoulou EF, Antonakou EV, Karakoulia SA, et al. Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts. Chem Eng J. 2007;134(1–3):51–57.
  • Antonakou E, Lappas A, Nilsen MH, et al. Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel. 2006;85(14–15):2202–2212.
  • Asadieraghi M, Wan Daud WMA. In-situ catalytic upgrading of biomass pyrolysis vapor: Using a cascade system of various catalysts in a multi-zone fixed bed reactor. Energy Convers. Manag. 2015;101):151–163.
  • Adam J, Antonakou E, Lappas A, et al. In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous Mesoporous Mater. 2006;96(1–3):93–101.
  • Zhang X, Sun L, Chen L, et al. Comparison of catalytic upgrading of biomass fast pyrolysis vapors over CaO and Fe(III)/CaO catalysts. J Anal Appl Pyrolysis. 2014;108:35–40.
  • Ding L, Rahimi P, Hawkins R, et al. Naphthenic acid removal from heavy oils on alkaline earth-metal oxides and ZnO catalysts. Appl Catal Gen. 2009;371(1–2):121–130.
  • Wang D, Xiao R, Zhang H, et al. Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis. J Anal Appl Pyrolysis. 2010;89(2):171–177.
  • French R, Czernik S. Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol. 2010;91(1):25–32.
  • Cheng Y-T, Jae J, Shi J, et al. Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts. Angew Chem. 2012;124(6):1416–1419.
  • Srinivasan V, Adhikari S, Chattanathan SA, et al. Catalytic pyrolysis of raw and thermally treated cellulose using different acidic zeolites. Bioenergy Res. 2014;7(3):867–875.
  • Iliopoulou EF, Stefanidis SD, Kalogiannis KG, et al. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl Catal B Environ. 2012;127:281–290.
  • Zhang B, Zhong Z-P, Wang X-B, et al. Catalytic upgrading of fast pyrolysis biomass vapors over fresh, spent and regenerated ZSM-5 zeolites. Fuel Process Technol. 2015;138:430–434.
  • Zhang H, Xiao R, Huang H, et al. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol. 2009;100(3):1428–1434.
  • Lim XY, Andrésen JM. Pyro-catalytic deoxgenated bio-oil from palm oil empty fruit bunch and fronds with boric oxide in a fixed-bed reactor. Fuel Process Technol. 2011;92(9):1796–1804.
  • Stefanidis SD, Kalogiannis KG, Iliopoulou EF, et al. In-situ upgrading of biomass pyrolysis vapors: Catalyst screening on a fixed bed reactor. Bioresour Technol. 2011;102(17):8261–8267.
  • Carlson TR, Cheng Y-T, Jae J, et al. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Env Sci. 2011;4(1):145–161.
  • Kim SW, Koo BS, Lee DH. Catalytic pyrolysis of palm kernel shell waste in a fluidized bed. Bioresour Technol. 2014;167:425–432.
  • Kim B-S, Jeong CS, Kim JM, et al. Ex situ catalytic upgrading of lignocellulosic biomass components over vanadium contained H-MCM-41 catalysts. Catal Today. 2015;265:184–191.
  • Choi YS, Lee K-H, Zhang J, et al. Manipulation of chemical species in bio-oil using in situ catalytic fast pyrolysis in both a bench-scale fluidized bed pyrolyzer and micropyrolyzer. Biomass Bioenergy. 2015;81:256–264.
  • Abu Bakar MS, Titiloye JO. Catalytic pyrolysis of rice husk for bio-oil production. J Anal Appl Pyrolysis. 2013;103:362–368.
  • Auta M, Ern LM, Hameed BH. Fixed-bed catalytic and non-catalytic empty fruit bunch biomass pyrolysis. J Anal Appl Pyrolysis. 2014;107:67–72.
  • Amin NAS, Misson M, Haron R, et al. Bio-oils and diesel fuel derived from alkaline treated empty fruit bunch (EFB). Carbon. 2012;47(40.70):46–30.
  • Chan YH, Dang KV, Yusup S, et al. Studies on catalytic pyrolysis of empty fruit bunch (EFB) using Taguchi's L9 Orthogonal Array. J Energy Inst 2014;87(3):227–234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.