70
Views
6
CrossRef citations to date
0
Altmetric
Articles

Ultrasonic and microwave effects on crystalline Mn(II) carbonate catalyzed biodiesel production using watermelon (Citrullus vulgaris) seed oil and alcohol (fibrous flesh) as exclusive green feedstock

, , , , &
Pages 735-741 | Received 17 Sep 2015, Accepted 04 May 2016, Published online: 21 Sep 2016

References

  • Mattelbach M. Lipase catalyzed alcoholysis of sunflower oil. J. Am. Oil Chem. Soc. 1990;67:168–170.
  • Noureddini H, Zhu D. Kinetics of transesterification of soybean oil. J. Am. Oil Chem. Soc. 1997;74:1457–1463.
  • Van Gerpen J. Biodiesel processing and production. Fuel Process.Tech. 2005;86:1097–1107.
  • Nelson LA, Foglia TA, Marner WN. Lipase-catalyzed production of biodiesel. J. Am. Oil Chem. Soc. 1996;73:1191–1195.
  • Köse O, Tüter M, Ayşe Aksoy H. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresour. Technol. 2002;83:125–129.
  • Nie K, Xie F, Wang F, et al. Lipase catalyzed methanolysis to produce biodiesel: Optimization of the biodiesel production. J. Mol. Catal. B: Enzym. 2006;43:142–147.
  • Shimada Y, Watanabe Y, Sugihara A, et al. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B: Enzym. 2002;17:133–142.
  • Iso M, Chen BX, Eguchi M, et al. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J. Mol. Catal. B:Enzym. 2001;16:53–58.
  • Dossat V, Combes D, Marty A. Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol. Enzyme Microb. Technol. 1999;25:194–200.
  • Du W, Xu Y, Liu D, et al. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J. Mol. Catal. B: Enzymatic. 2004;30:125–129.
  • Ma F, Hanna MA. Biodiesel production: a review. Bioresource Tech. 1999;70:1–15.
  • Krawczyk T. Biodiesel-alternative fuel makes inroads but hurdles remains. INFORM. 1996;7:801.
  • Murayama T. Evaluating vegetable oils as a diesel fuel. INFORM. 1994;5:1138.
  • Zhang Y, Dube MA, McLean DD, et al. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Tech. 2003;89:1–16.
  • Demirbas A, Karslioglu S. Energy sources: biodiesel production facilities from vegetable oils and animal fats. Energ. Source. Part A. 2007;29:133–141.
  • Ataya F, Dube MA, Ternan MT. Acid-catalyzed transesterification of canola oil to biodiesel under single-and two-phase reaction conditions. Energy & Fuels. 2007;21:2450–2459.
  • Anastas PT, Warner JC. Green chemistry: Theory and practice. New York: Oxford University Press; 1998.
  • Anastas PT, Williamson TC. Green chemistry: Designing chemistry for the environment. Washington, DC: American ChemicalSociety; 1996.
  • Anastas PT, Heine LG. Green chemical synthesis and processes. Washington, DC: American Chemical Society; 2000.
  • Behr A, Eilting J, Irawadi K, et al. Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chem. 2008;10:13–30.
  • Wilson K, Hardacre C, Lee AF, et al. The application of calcined natural dolomitic rock as a solid base catalyst in triglyceride transesterification for biodiesel synthesis. Green Chem. 2008;10:654–659.
  • Ilgen O, Dincer I, Yildez M, et al. Investigation of biodiesel production from canola oil using Mg-Al hydrotalcite catalysts. Turk. J. Chem. 2007;31:509–514.
  • Meher LC, Dharmagadda VSS, Naik SN. Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresource Tech. 2006;97:1392–1397.
  • Sanchez F, Vasudevan PT. Enzyme catalyzed production of biodiesel from olive oil. Appl. Biochem. Biotechnol. 2006;135:1–14.
  • Kusdiana D, Saka S. Two-step preparation for catalyst-free biodiesel fuel production. Appl. Biochem. Biotech. 2004;115:781–791.
  • Majewski MW, Pollack SA, Curtis-Palmer VA. Diphenylammonium salt catalysts for microwave assisted triglyceride transesterification of corn and soybean oil for biodiesel production. TetrahedronLett. 2009;50:5175–5177.
  • Ramalinga K, Vijayalakshmi P, Kaimal TNB. A mild and efficient method for esterification and transesterification catalyzed by iodine. Tetrahedron Lett. 2002;43:879.
  • Chavan SP, Zubaidha PK, Dantale SW, et al. Use of solid superacid (sulphated SnO2) as efficient catalyst in tacile transesterification of ketoesters. Tetrahedron Lett. 1996;37:233–236.
  • Madje BR, Patil PT, Shindalkar SS, et al. Facile transesterification of β-ketoesters under solvent-free condition using borate zirconia solid acid catalyst. Catal. Comm. 2004;5:353–357.
  • Reddy BM, Reddy VR, Manohar B. Mo-ZrO2 solid acid catalyst for transesterification of β-Ketoesters. Synth. Comm. 1999;29:1235–1239.
  • Bandgar BP, Uppalla L, Sadavarte VS. Envirocat EPZG and natural clay as efficient catalysts for transesterification of β-keto esters. Green Chem. 2001;3:39–41.
  • Reidies AH. Manganese compounds. In Ullmann's encyclopedia of chemical technology. New York: John Wiley; 2007.
  • Krishnaiah G, Sandeep B, Kondhare D, et al. Manganese(II) salts as efficient catalysts for chemo selective transesterification of β-keto esters under non-conventional conditions. Tetrahedron Lett. 2013;54:703–706.
  • Rao YR, Zubaidha PK, Reddy JN, et al. Crystalline manganese carbonate a green catalyst for biodiesel production. Green Sustain. Chem. 2012;2:14–20.
  • Rao YR, Zubaidha PK, Reddy JN, et al. Production of biodiesel from Guizotia abyssinica seed oil using crystalline manganese carbonate (MnCO3) a green catalyst. Catal. Sustain. Energy. 2012;22–27; doi:10.2478/cse-2012-0003.
  • Rao YR, Zubaidha PK, Reddy JN, et al. Biodiesel production from Argemone mexicana seed oil using crystalline manganese carbonate. Polish J. Chem.Tech. 2012;14:65–70.
  • Rao YR, Ravi V, Reddy JN, et al. Evaluation of watermelon seed oil as an alternative feedstock for the production of biodiesel in the presence of crystalline manganese carbonate. International J. Alter. Fuels. 2012;14:378.
  • Fish WW, Bruton BD, Russo VM. Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production. Biotech. Biofuels. 2009;2:18. doi:10.1186/1754-6834-2-18.
  • Kim SL, Kim WJ, Lee SY, et al. Alcohol fermentation of Korean watermelon juice. J. Korean. Soc. Ag. Chem. Biotech. 1984;27:139–145.
  • Centinkaya M, Karaosmanoglu F. Optimization of base-catalyzed transesterification reaction of used cooking oil. Energy and Fuels. 2004:18:1888–1895.
  • Pearson RG. Chemical ardness. Weinheim: John Wiley, VCH; 1997.
  • Suslick KS. Ultrasound: Its chemical, physical and biological effects. New York: VCH; 1988.
  • Singh V, Kaur KP, Khurana A, et al. Ultrasound: A boon in the synthesis of organic compounds. Resonance. 1998;3:56–60.
  • http://www.hielscher.com/biodiesel.
  • Mason TJ. Chemistry with ultrasound. London: Elsevier Science Publishers; 1990.
  • Mason TJ, Peters D. Practical sonochemistry: Power ultrasound uses and applications. 2nd Ed. Chichester: Harwood Publishing; 2003.
  • Bremner H. Recent advances in organic synthesis utilizing ultrasound. Ultrason. Sonochem. 1994;1:119–124.
  • Cravotto G, Cintas P. Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev. 2006;35:180–196.
  • Subhedar PB, Gogate PR. Ultrasound assisted intensification of biodiesel production using enzymatic interesterification. Ultrason. Sonochem. 2016;29:67–75.
  • Lidstrom P, Tierney J, Wathey B, et al. Microwave assisted organic synthesis–a review. Tetrahedron. 2001;57:9225.
  • Kappe CO. Controlled microwave heating in modern organic synthesis. Angew. Chem., Int. Ed. 2004;43:6250–6284.
  • Loupy A. Microwaves in organic synthesis. Weinheim: Wiley-VCH; 2005.
  • Tesfaye M, Katiyar V. Microwave assisted synthesis of biodiesel from soybean oil: Effect of poly (lactic acid)-oligomer on cold flow properties, IC engine performance and emission characteristics. Fuel. 2016;170:107–114.
  • Pearson RG. Hard and soft acids and bases. J. Am. Chem. Soc. 1963:85:3533–3543.
  • Pearson RG. Hard and soft acids and bases, HSAB, part -I: Fundamental principles. J. Chem. Educ. 1968:45:581.
  • Pearson RG. Hard and soft acids and bases, HSAB, part II: Underlying theories. J. Chem. Educ. 1968;45:643.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.