98
Views
7
CrossRef citations to date
0
Altmetric
Articles

Studies on The Hungate technique for ethanol fermentation of algae Spirogyra hyalina using Saccharomyces cerevisiae

, &
Pages 367-372 | Received 24 May 2016, Accepted 20 Aug 2016, Published online: 22 Sep 2016

References

  • Speirs J, McGlade C, Slade R. Uncertainty in the availability of natural resources: fossil fuels, critical metals and biomass. Energ Policy. 2015;87:654–664.
  • Tvinnereim E, Ivarsflaten E. Fossil fuels, employment, and support for climate policies. Energ Policy. 2016;96:364–371.
  • Atilgan B, Azapagic A. Life cycle environmental impacts of electricity from fossil fuels in Turkey. J Clean Prod. 2015;106:555–564.
  • Li K, Liu S, Liu X. An overview of algae bioethanol production. Int J Energ Res. 2014;38(8):965–977.
  • Jang J, Cho Y, Jeong G, et al. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosystems Eng. 2012;35(1):11–18.
  • Soha RA, Khalil AA, Abdelhafez EA, et al. Evaluation of bioethanol production from juice and bagasse of some sweet sorghum varieties. Ann Agr Sci. 2015;60(2):317–324.
  • Faraco V. Lignocellulose conversion: enzymatic and microbial tools for bioethanol production. Berlin, Heidelberg: Springer-Verlag; 2013.
  • Vassilev SV, Vassileva CG. Composition, properties and challenges of algae biomass for biofuel application: an overview. Fuel. 2016;181(1):1–33.
  • Sarkar D, Shimizu K. An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. Bioresource Bioprocess. 2015;2(17):1–19.
  • Jones CS, Mayfield SP. Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotech. 2012;23(3):346–351.
  • Sulfahri, Ni'matuzahroh, Manuhara YSW. Optimization of the bioconversion of spirogyra hyalina hydrolysates to become ethanol using Zymomonas mobilis. J Appl Environ Biol Sci. 2012;2(8):374–379.
  • Sulfahri, Amin M, Sumitro SB, et al. Bioethanol production from algae Spirogyra hyalina using Zymomonas mobilis. Biofuels. 2016.
  • Sulfahri, Nurhidayati T, Nurhatika S. Aerobic and anaerobic processes of Spirogyra extract using different doses of Zymomonas mobilis. J Appl Environ Biol Sci. 2011;1(10):420–425.
  • Jeon YB, Hwang TS, Park DH. Electrochemical and biochemical analysis of ethanol fermentation of Zymomonas mobilis KCCM11336. J Microbiol Biotechn. 2009;19(7):664–674.
  • Hou J, Scalcinati G, Oldiges M, et al. Metabolic Impact of Increased NADH availability in Saccharomyces cerevisiae. Appl Environ Microb. 2009;76(3):851–859.
  • Knudsen JD, Carlquist M, Grauslund MG. NADH-dependent biosensor in Saccharomyces cerevisiae: principle and validation at the single cell level. AMB Express. 2014;4:81.
  • Zhang K, Feng H. Fermentation potentials of Zymomonas mobilis and its application in ethanol production from low-cost raw sweet potato. Afr J Biotechnol. 20109(37):6122–6128.
  • Cazetta ML, Celligoi MAPC, Buzato JB, et al. Fermentation of molasses by Zymomonas mobilis: effect of temperature and sugar concentration on ethanol production. J Bioresource Technol. 2007;98:2824–2828.
  • Briyant MP. Commentary on the hungate of anaerobic bacteria. Am J Clin Nutr. 1972;25:1324–1328.
  • Horwitz W, Alan S, Helen R, et al. Official methods of analysis of the AOAC, 12th edition. AOAC, 1975, Washington DC.
  • Chaudhary, Naureen, Qazi JI. Microbiological saccharification and ethanol production from sugarcane bagasse. J Biotechnol. 2006;5(4):517–521.
  • Limtong S, Sumpradit T, Kitpreechavanich V. Effect of acetic acid on growth and ethanol fermentation of xylose fermenting yeast and Saccharomyces cerevisiae. Nat Sci. 2000;34:64–73.
  • Arroyo-López FN, Orlić S, Querol A, et al. Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid. Int J Food Microbiol. 2009;131(2–3):120–127.
  • Itelima J, Ogbonna A, Pandukur S. Simultaneous saccharification and fermentation of corn cobs to bioethanol by co-culture of Aspergillus niger and Saccharomyces cerevisiae. Int J Environ Sci Dev. 2013;4(2):239–242.
  • Wiratno EN, Ardyati T, Wardani AK. Effect of reducing sugar and total nitrogen to ethanol production from molasses by Saccharomyces cerevisiae. J Exp Life Sci. 2014;4(2):50–55.
  • Wecker MSA, Zall RR. Production of acetaldehyde by Zymomonas mobilis. J Appl Environ Microbiol. 1987;53(12):2815–2820.
  • Geermen JM, Van Dijken JP, Pronk JT. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res. 2006;6(2006):1193–1203.
  • Tsantili IC, Nazmul K, Maria IK. Quantifying the metabolic capabilities of engineered Zymomonas mobilis using linear programming analysis. J Microb Cell Fact. 2007;6(8):1–23.
  • Reddy GK, Lindner SN, Wendisch VF. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growthrestoration by an adaptive point mutation in NADH dehydrogenase. Appl Environ Microbiol. 2015;81(6):1996–2005.
  • Nowak J. Ethanol yield and productivity of Zymomonas mobilis in various fermentation methods. Electronic Journal of Polish Agricultural Universities. 2000;3(2):4–10.
  • Rutkis R, Kalnenieks U, Stalidzans E, et al. Kinetic modelling of the Zymomonas mobilis Entner–Doudoroff pathway: insights into control and functionality. Microbiology. 2015;159:2674–2689.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.