791
Views
40
CrossRef citations to date
0
Altmetric
Articles

Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: an attempt to utilize pentose sugars

, , &
Pages 431-444 | Received 29 Mar 2016, Accepted 30 Sep 2016, Published online: 09 Nov 2016

References

  • Njoku SI, Iversen JA, Uellendahl H, et al. Production of ethanol from hemicellulose fraction of cocksfoot grass using Pichia stipitis. Sustain Chem Process. 2013;1(13):1–7.
  • Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Biores Technol. 2008;99(13):5270–5295.
  • Schadel C, Blochl A, Richter A, et al. Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiol Bioch 2010;48(1):1–8.
  • Zhang YHP, Ding SY, Mielenz JR, et al. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng. 2007;97(2):214–223.
  • Nieves LM, Panyon LA, Wang X. Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front Bioeng Biotechnol. 2015. doi: 10.3389/fbioe.2015.00017 (Epub ahead of print).
  • Galbe M, Zacchi GA. Review of the production of ethanol from softwood. Appl Microbiol Biot. 2002;59(6):618–628.
  • Avanthi A, Banerjee R. A strategic laccase mediated lignin degradation of lignocellulosic feedstocks for ethanol production. Ind Crops Prod. 2016;92:174–185.
  • Smil V. Crop residues: agriculture′s largest harvest-crop residues incorporate more than half of the world agricultural phytomass. Bioscience. 1999;49(4):299–308.
  • Jeffries TW, Jin YS. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biot. 2004;63:495–509.
  • Ångpanneföreningen. IPK System study-techno/economic reviews of process combinations of ethanol processes and other relevant industrial processes. Stockholm: NUTEK; 1994. (Report: P23332-1).
  • Brat D, Boles E, Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microb. 2009;75:2304–2311.
  • Kuila A, Mukhopadhyay M, Tuli DK, et al. Production of ethanol from lignocellulosics: an enzymatic venture. Excli J. 2011;10:85–96.
  • Mukhopadhyay M, Kuila A, Tuli DK, et al. Enzymatic depolymerization of Ricinus communis, a potential lignocellulosic for improved saccharification. Biomass Bioenergy. 2011;35(8):3584–3591.
  • Kuila A, Mukhopadhyay M, Tuli DK, et al. Accessibility of enzymatically delignified Bambusa bambos for efficient hydrolysis at minimum cellulase loading: an optimization study. Enzyme Res. 2011. doi:10.4061/2011/805795 (Epub ahead of print).
  • Cengiz M, Dincturk OD, Sahin HT. Fractional extraction and structural characterization of opium poppy and cotton stalks hemicelluloses. Pharmacognosy Magazine. 2010;6(24):315–319.
  • Updegroff DM. Semimicro determination of cellulose in biological materials. Anal Biochem. 1969;32:420–424.
  • Olver B, Van Dyk JS, Beukes N, et al. Synergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates. 3 Biotech. 2011;1:187–192.
  • Sorek N, Yeats TH, Szemenyei H, et al. The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. BioScience. 2014;64(3):192–201.
  • Shahzadi T, Mehmood S, Irshad M, et al. Advances in lignocellulosic biotechnology: a brief review on lignocellulosic biomass and cellulases. Adv Biosci Biotechnol. 2014;5:246–251.
  • Kim M, Day DF. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol. 2011;38:803–807.
  • Santos JI, Martín-Sampedro R, Fillat U, et al. Evaluating lignin-rich residues from biochemical ethanol production of wheat straw and olive tree pruning by FTIR and 2D-NMR. Int J Polym Sci. 2015. Available from: http://dx.doi.org/10.1155/2015/314891 (Epub ahead of print).
  • Bottcher A, Cesarino I, dos Santos AB, et al. Lignification in sugarcane: biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content. Plant Physiol. 2013;163:1539–1557.
  • Pasangulapati V, Ramachandriya KD, Kumar A, et al. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Biores Technol. 2012;114:663–669.
  • Mohammed IY, Abakr YA, Kazi FK, et al. Comprehensive characterization of Napier grass as a feedstock for thermochemical conversion. Energies. 2015;8:3403–3417.
  • Saha BC. Hemicellulose bioconversion. J Ind Microbiol Biotechnol. 2003;30:279–291.
  • Girio FM, Fonseca C, Carvalheiro F, et al. Hemicelluloses for fuel ethanol: A review. Bioresource Technol. 2010;101(13):4775–4800.
  • Reyes P, Mendonca RT, Rodríguez J, et al. Characterization of the hemicellulosic fraction obtained after pre-hydrolysis of Pinus radiata wood chips with hot-water at different initial pH. J Chil Chem Soc. 2013;58(1):1614–1618.
  • Chandel AK, Singh OV, Rao LV. Biotechnological applications of hemicellulosic derived sugars: State-of-the-art. In: Singh OV, Harvey SP, editors. Sustainable biotechnology: Renewable resources and new perspectives. Netherlands: Springer Verlag; 2010. p. 63–81.
  • Ebringerova A, Hromadkova Z, Heinze T. Hemicellulose. Adv Polym Sci. 2005;186:1–67.
  • Van Maris AJA, Abbott DA, Bellissimi E, et al. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek. 2006;90(4):391–418.
  • Pettersen RC. The chemistry of solid wood. In: Rowell RM, editor. Advances in Chemistry series 207. Washington (DC): American Chemical Society Press; 1984; p. 57–61.
  • Hespell RB. Extraction and characterization of hemicelluloses from the corn fiber produced by corn wet-milling processes. J Agric Food Chem. 1998;46(7):2615–2619.
  • Kang Q, Appels L, Tan T, et al. Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J. 2014;2014(298153):1–13.
  • van Maris AJA, Winkler AA, Kuyper M, et al. Development of efficient xylose fermentationin Saccharomyces cerevisiae: xylose isomeraseas a key component. Adv Biochem Eng/Biotechnol. 2007;108:179–204.
  • Aristidou A, Penttila M. Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol. 2000;11:187–198.
  • Hahn-Hagerdal B, Wahlbom CF, Gardonyi M, et al. Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng/Biotechnol. 2001;73:53–84.
  • Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes L-Arabinose and produces ethanol. Appl Environ Microb. 2003;69(7):4144–4150.
  • Casey E, Mosier NS, Adamec J, et al. Effect of salts on the co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae. Biotechnol Biofuels. 2013;6(83):1–10.
  • Von Sivers M, Zacchi G. Ethanol from lignocellulosics: a review of the economy. Biores Technol. 1996;56(2-3):131–140.
  • Wahlbom CF, Cordero Otero RR, van Zyl WH, et al. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microb. 2003;69:740–746.
  • du Preez JC. Process parameters and environmental factors affecting D-xylose fermentation by yeasts. Enzyme Microb Tech. 1994;16:944–956.
  • Agbogbo FK, Coward-Kelly G. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett. 2008;30:1515–1524.
  • Hinman ND, Wright JD, Hoagland W, et al. Xylose Fermentation: an economic analysis. Appl Biochem Biotech. 1989;20(1):391–401.
  • Toivola A, Yarrow D, van den Bosch E, et al. Alcoholic fermentation of D-xylose by yeasts. Appl Environ Microb. 1984;47(6):1221–1223.
  • du Preez JC, van der Walt JP. Fermentation of D-xylose to ethanol by a strain of Candida shehatae. Biotechnol Lett. 1983;5(5):357–362.
  • Maleszka R, Schneider H. Concurrent production and consumption of ethanol by cultures of Pachysolen tannophilus growing on D-xylose. Appl Environ Microb. 1982;44(4):909–912.
  • Bruinenberg PM, van Dijken JP, Scheffers WA. Production and consumption of NADPH and NADH during growth of Candida utilis on xylose. Antonie Van Leeuwenhoek. 1984;50(1):81–82.
  • Gírio FM, Roseiro JC, Sá-Machado P, et al. Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii. Enzyme Microb Tech. 1994;16(12):1074–1078.
  • Walfridsson M, Bao X, Anderlund M, et al. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol. 1996;62(12):4648–4651.
  • Kuyper M, Harhangi HR, Stave AK, et al. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 2003;4(1):69–78.
  • Demain AL, Newcomb M, David Wu JH. Cellulase, Clostridia, and ethanol. Microbiol Mol Biol Rev. 2005;69(1):124–154.
  • Fonseca C, Romao R, Rodrigues de Sousa H, et al. L-arabinose transport and catabolism in yeast. FEBS J. 2007;274(14):3589–3600.
  • Fonseca C, Spencer-Martins I, Hahn-Hagerdal B. L-arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation. Appl Microbiol Biot. 2007;75(2):303–310.
  • Dien BS, Kurtzman CP, Saha BC, et al. Screening for L-arabinose fermenting yeasts. Appl Biochem Biotech. 1996;57–58:233–242.
  • Englesberg E. Enzymatic characterization of 17 L-arabinose negative mutants of Escherichia coli. J Bacteriol. 1961;81:996–1006.
  • Englesberg E, Squires C, Meronk Jr F. The L-arabinose operon in Escherichia coli B-r: a genetic demonstration of two functional states of the product of a regulator gene. Proc Natl Acad Sci USA. 1969;62(4):1100–1107.
  • Sa-Nogueira I, de Lencastre H. Cloning and characterization of araA, araB, and araD, the structural genes for L-arabinose utilization in Bacillus subtilis. J Bacteriol. 1989;171(7):4088–4091.
  • Chiang C, Knight SG. L-arabinose metabolism by cell-free extracts of Penicillium chrysogenum. Biochim Biophys Acta. 1961;46(2):271–278.
  • Witteveen CFB, Busink R, van de Vondervoort P, et al. L-arabinose and D-xylose catabolism in Aspergillus niger. J Gen Microbiol. 1989;135(8):2163–2171.
  • Richard P, Putkonen M, Vaananen R, et al. The missing link in the fungal L-arabinose catabolic pathway, identification of the L-xylulose reductase gene. Biochemistry. 2002;41(20):6432–6437.
  • Fernandes S, Murray P. Metabolic engineering for improved microbial pentose fermentation. Bioeng Bugs. 2010;1(6):424–428.
  • Hahn-Hagerdal B, Karhumaa K, Fonseca C, et al. Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol. 2007;74:937–953.
  • Hahn-Hagerdal B, Lindien T, Senac T, et al. Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Appl Biochem Biotechnol. 1991;28(1):131–144.
  • Yano S. Enzymatic saccharification and fermentation technology for ethanol production from woody biomass. J Jpn Pet Inst. 2015;58(3):128–134.
  • Kim SR, Ha SJ, Wei N, et al. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 2012;30(5):274–282.
  • Menon V, Rao MR. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci. 2012;38:522–550.
  • Shallom D, Shoham Y. Microbial hemicellulases. Curr Opin Microbiol. 2003;6:219–228.
  • Hu J, Arantes V, Pribowo A, et al. The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol Biofuels. 2013;6(112):1–12.
  • Chovau S, Degrauwe D, Bruggen BV. Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renew Sustainable Energy Rev. 2013;26:307–321.
  • Lupoi JS, Smith EA. Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions. Biotechnol Bioeng. 2011;108(12):2835–2843.
  • Kuyper M, Toirkens MJ, Diderich JA, et al. Evolutionary engineering of mixed-sugar utilization bya xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005;5(10):925–934.
  • Brat D, Boles E, Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microb. 2009;75:2304–2311.
  • Senac T, Hahn-Hagerdal B. Intermediary metabolite concentrations in xylulose- and glucose fermenting Saccharomyces cerevisiae cells. Appl Environ Microb. 1990;56(1):120–126.
  • Pontremoli S, Bonsignore A, Grazi E, et al. A coupled reaction catalyzed by the enzymes transketolase and transaldolase. J Biol Chem. 1960;235:1881–1887.
  • Pontremoli S, Bandini BD, Bonsignor EA, et al. The preparation of crystalline transaldolase from Candida utilis. Proc Natl Acad Sci USA. 1961;47(12):1942–1949.
  • Kotter P, Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biot. 1993;38:776–783.
  • Lagunas R. Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol Rev. 1993;104(3-4):229–242.
  • Meinander NQ, Hahn-Hagerdal B. Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1- expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates. Appl Environ Microbiol. 1997;63(5):1959–1964.
  • Kruckeberg AL. The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol. 1996;166(5):283–292.
  • Sedlak M, Ho NWY. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose cofermentation by a recombinant Saccharomyces yeast. Yeast. 2004;21(8):671–684.
  • Hamacher T, Becker J, Gárdonyi M, et al. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology. 2002;148(9):2783–2788.
  • Sanchez RG, Karhumaa K, Fonseca C, et al. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels. 2010;3(13):1–11.
  • Kou SC, Christensen MS, Cirillo VP. Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose uptake and exchange in galactokinaseless cells. J Bacteriol. 1970;103(3):671–678.
  • Ha SJ, Wei Q, Kim SR, et al. Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain. Appl Environ Microb. 2011;77(16):5822–5825.
  • Ha SJ, Galazka JM, Kim SR, et al. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA. 2011;108:504–509.
  • Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev. 1998;62:334–361.
  • Rolland F, Winderickx J, Thevelein JM. Glucose-sensing and signalling mechanisms in yeast. FEMS Yeast Res. 2002;2(2):183–201.
  • Verstrepen KJ, Iserentant D, Malcorps P, et al. Glucose and sucrose: hazardous fast-food for industrial yeast? Trends Biotechnol. 2004;22:531–537.
  • Santangelo GM. Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2006;70:253–282.
  • Tian C, Beeson WT, Iavarone AT, et al. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci USA. 2009;106:22157–22162.
  • Galazka JM, Tian C, Beeson WT, et al. Cellodextrin transport in yeast for improved biofuel production. Science. 2010;330(6000):84–86.
  • Li S, Du J, Sun J, et al. Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae. Mol Biosyst. 2010;6:2129–2132.
  • Raamsdonk LM, Diderich JA, Kuiper A, et al. Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene. Yeast. 2001;18(11):1023–1033.
  • Barakat A, Monlau F, Solhy A, et al. Mechanical dissociation and fragmentation of lignocellulosic biomass: Effect of initial moisture, biochemical and structural proprieties on energy requirement. Appl Energy. 2015;142:240–246.
  • Kumar P, Barrett DM, Delwiche MJ, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. 2009;48:3713–3729.
  • King D, Inderwildi OR, Williams A. The future of industrial biorefineries. World Economic Forum; 2010. Available from: www3.weforum.org/docs/WEF_FutureIndustrialBiorefineries_Report_2010.pdf (Accessed 23 March 2016).
  • Biofuel.org.uk. www.biofuel.org.uk (Accessed 23 March 2016).
  • Durante D, Sneller T, Buchholz D. Clean fuels foundation. Environmental impacts of ethanol production. 2009. Available from: www.ethanolacrossamerica.net (Accessed 24 March 2016).
  • Balan V. Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol. 2014;2014, Article ID 463074:1–31.
  • Chen X, Tao L, Shekiro J, et al. Improved ethanol yield and reduced minimum ethanol selling price (MESP) by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 1) Experimental. Biotechnol Biofuels. 2012;5(60):1–10.
  • Borglum GB. Starch hydrolysis for ethanol production. Elkhart, Indiana: Miles Laboratories, Inc. 1980. p. 264–269.
  • Metzger JO, Hüttermann A. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas. Naturwissenschaften. 2009;96:279–288.
  • Kapazoglou A, Drosou V, Nitsos CK, et al. Biofuels get in the fast lane: developments in plant feedstock production and processing. Adv Crop Sci Tech. 2013;1(4):1–16.
  • Basavaraj G, Rao PP, Basu K, et al. Assessing viability of bio-ethanol production from sweet sorghum in India. Energ Policy. 2013;56:501–508.
  • Dhar KS, Wendisch VF, Nampoothiri KM. Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. J Biotechnol. 2016;230:63–71.
  • Machado G, Leon S, Santos F, et al. Literature review on furfural production from Lignocellulosic biomass. Nat Resour. 2016;7:115–129.
  • Kim TH, Ryu HJ, Oh KK. Low acid hydrothermal fractionation of Giant Miscanthus for production of xylose-rich hydrolysate and furfural. Bioresour Technol. 2016;218:367–372.
  • Wisuthiphaet N, Napathorn SC. Optimisation of the use of products from the cane sugar industry for poly(3-hydroxybutyrate) production by Azohydromonas lata DSM 1123 in fed-batch cultivation. Process Biochem. 2016;51:352–361.
  • Sindhu R, Silviya N, Binod P, et al. Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem Eng J. 2013;78:67–72.
  • Pereira B, Li ZJ, Mey MD, et al. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate. Metab Eng. 2016;34:80–87.
  • Iqbal HMN, Kyazze G, Keshavarz T. Advances in the valorization of lignocellulosic materials by biotechnology: an overview. Bioresources. 2013;8(2):3157–3176.
  • Chintagunta AD, Jacob S, Banerjee R. Integrated bioethanol and biomanure production from potato waste. Waste Manag. 2015. doi:10.1016/j.wasman.2015.08.010 (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.