247
Views
17
CrossRef citations to date
0
Altmetric
Articles

Proof of concept for biorefinery approach aiming at two bioenergy production compartments, hydrogen and biodiesel, coupled by an external membrane

, , , , &
Pages 163-174 | Received 21 Dec 2015, Accepted 19 Mar 2016, Published online: 16 Dec 2016

References

  • Cherubini F. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag. 2010;51(7):1412–1421.
  • Levin DB, Zhu H, Beland M, et al. Potential for hydrogen and methane production from biomass residues in Canada. Bioresour Technol. 2007;98(3):654–660.
  • Pereyra-Irujo GA, Izquierdo NG, Covi M, et al. Variability in sunflower oil quality for biodiesel production: a simulation study. Biomass Bioenergy. 2009;33(3):459–468.
  • Chen H, Fu X. Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sustain Energy Rev. 2016;57:468–478.
  • Dakrim-Lamari F, Malbrunot P. Combustible hydrogène [Internet]. Tech. Ing. BE8 566, BE 8566–2 to BE–8566–11 2013. Available from: http://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/chimie-verte-et-nouvelle-gestion-de-l-energie-42494210/combustible-hydrogene-be8566/
  • Wang Y, Chen KS, Mishler J, et al. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy. 2011;88(4):981–1007.
  • Singhania RR, Patel AK, Christophe G, et al. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresour Technol. 2013;145:166–174.
  • Yang N, Hafez H, Nakhla G. Impact of volatile fatty acids on microbial electrolysis cell performance. Bioresour Technol. 2015;193:449–455.
  • Srikanth S, Venkata Mohan S, Prathima Devi M, et al. Acetate and butyrate as substrates for hydrogen production through photo-fermentation: process optimization and combined performance evaluation. Int J Hydrog Energy. 2009;34(17):7513–7522.
  • Liu D, Liu D, Zeng RJ, et al. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 2006;40(11):2230–2236.
  • Meesters PAEP, Huijberts GNM, Eggink G. High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol. 1996;45(5):575–579.
  • Wu S, Zhao X, Shen H, et al. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol. 2011;102(2):1803–1807.
  • Wu S, Hu C, Jin G, et al. Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol. 2010;101(15):6124–6129.
  • Yu X, Zheng Y, Xiong X, et al. Co-utilization of glucose, xylose and cellobiose by the oleaginous yeast Cryptococcus curvatus. Biomass Bioenergy. 2014;71:340–349.
  • Xu X, Kim JY, Cho HU, et al. Bioconversion of volatile fatty acids from macroalgae fermentation into microbial lipids by oleaginous yeast. Chem Eng J. 2015;264:735–743.
  • Béligon V, Poughon L, Christophe G, et al. Improvement and modeling of culture parameters to enhance biomass and lipid production by the oleaginous yeast Cryptococcus curvatus grown on acetate. Bioresour Technol. 2015;192:582–591.
  • Bulock JD, Kristiansen B. Basic biotechnology. London: Academic Press. Saunders College Publishing/Harcourt Brace; 1987.
  • Gaudet G, Forano E, Dauphin G, et al. Futile cycling of glycogen in Fibrobacter succinogenes as shown by in situ 1H-NMR and 13C-NMR investigation. Eur J Biochem FEBS. 1992;207(1):155–162.
  • Trad Z, Akimbomi J, Vial C, et al. Development of a submerged anaerobic membrane bioreactor for concurrent extraction of volatile fatty acids and biohydrogen production. Bioresour Technol. 2015;196:290–300.
  • Patton CJ, Crouch SR. Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Anal Chem. 1977;49(3):464–469.
  • Morrison WR, Smith LM. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J Lipid Res. 1964;5:600–608.
  • Ramos MJ, Fernández CM, Casas A, et al. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol. 2009;100(1):261–268.
  • Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 2005;86(10):1059–1070.
  • Lapuerta M, Rodríguez-Fernández J, Armas O. Correlation for the estimation of the density of fatty acid esters fuels and its implications. A proposed Biodiesel Cetane Index. Chem Phys Lipids. 2010;163(7):720–727.
  • Moser BR. Biodiesel production, properties, and feedstocks. Vitro Cell Dev Biol-Plant. 2009;45(3):229–266.
  • Latrille E, Trably E, Larroche C. Production de biohydrogène : voie fermentaire sombre [internet]. Techniques de l'Ingénieur. Tech Ing. BIO 3351, BIO 3351-1 to BIO 3351-19, 2011. Available from: http://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/chimie-verte-et-nouvelle-gestion-de-l-energie-42494210/production-de-biohydrogene-voie-fermentaire-sombre-bio3351/
  • Su H, Cheng J, Zhou J, et al. Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency. Int J Hydrog Energy. 2009;34(21):8846–8853.
  • Hiligsmann S, Masset J, Hamilton C, et al. Comparative study of biological hydrogen production by pure strains and consortia of facultative and strict anaerobic bacteria. Bioresour Technol. 2011;102(4):3810–3818.
  • Karadag D. Anaerobic H2 production at elevated temperature (60  °C) by enriched mixed consortia from mesophilic sources. Int J Hydrog Energy. 2011;36(1):458–465.
  • Hniman A, Prasertsan P, O-Thong S. Community analysis of thermophilic hydrogen-producing consortia enriched from Thailand hot spring with mixed xylose and glucose. Int J Hydrog Energy. 2011;36(21):14217–14226.
  • Lo Y-C, Chen W-M, Hung C-H, et al. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Water Res. 2008;42(4–5):827–842.
  • Zhang S, Kim T-H, Lee Y, et al. Effects of VFAs concentration on bio-hydrogen production with clostridium bifermentans 3AT-ma. Energy Procedia. 2012;14:518–523.
  • Srikanth S, Venkata Mohan S. Regulating feedback inhibition caused by the accumulated acid intermediates during acidogenic hydrogen production through feed replacement. Int J Hydrog Energy. 2014;39(19):10028–10040.
  • Bakonyi P, Nemestóthy N, Simon V, et al. Fermentative hydrogen production in anaerobic membrane bioreactors: a review. Bioresour Technol. 2014;156:357–363.
  • Shen L, Bagley DM, Liss SN. Effect of organic loading rate on fermentative hydrogen production from continuous stirred tank and membrane bioreactors. Int J Hydrog Energy. 2009;34(9):3689–3696.
  • Vajpeyi S, Chandran K. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids. Bioresour Technol. 2015;188:49–55.
  • Peng W, Huang C, Chen X, et al. Microbial conversion of wastewater from butanol fermentation to microbial oil by oleaginous yeast Trichosporon dermatis. Renew Energy. 2013;55:31–34.
  • Chen X, Huang C, Xiong L, et al. Oil production on wastewaters after butanol fermentation by oleaginous yeast Trichosporon coremiiforme. Bioresour Technol. 2012;118:594–597.
  • Wang Y, Gong Z, Yang X, et al. Microbial lipid production from pectin-derived carbohydrates by oleaginous yeasts. Process Biochem. 2015;50(7):1097–1102.
  • Munch G, Sestric R, Sparling R, et al. Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol. Bioresour Technol. 2015;185:49–55.
  • Xu X, Kim JY, Oh YR, et al. Production of biodiesel from carbon sources of macroalgae, Laminaria japonica. Bioresour Technol. 2014;169:455–461.
  • Ling J, Nip S, Shim H. Enhancement of lipid productivity of Rhodosporidium toruloides in distillery wastewater by increasing cell density. Bioresour Technol. 2013;146:301–309.
  • Espinosa-Gonzalez I, Parashar A, Chae M, et al. Cultivation of oleaginous yeast using aqueous fractions derived from hydrothermal pretreatments of biomass. Bioresour Technol. 2014;170:413–420.
  • Gen Q, Wang Q, Chi Z-M. Direct conversion of cassava starch into single cell oil by co-cultures of the oleaginous yeast Rhodosporidium toruloides and immobilized amylases-producing yeast Saccharomycopsis fibuligera. Renew Energy. 2014;62:522–526.
  • Uçkun Kiran E, Trzcinski A, Webb C. Microbial oil produced from biodiesel by-products could enhance overall production. Bioresour Technol. 2013;129:650–654.
  • Patel A, Pruthi V, Singh RP, et al. Synergistic effect of fermentable and non-fermentable carbon sources enhances TAG accumulation in oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresour Technol. 2015;188:136–144.
  • Anschau A, Xavier MCA, Hernalsteens S, et al. Effect of feeding strategies on lipid production by Lipomyces starkeyi. Bioresour Technol. 2014;157:214–222.
  • Fei Q, Chang HN, Shang L, et al. The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour Technol. 2011;102(3):2695–2701.
  • Ren H-Y, Liu B-F, Kong F, et al. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation. Bioresour Technol. 2014;157:355–359.
  • Venkata Subhash G, Venkata Mohan S. Deoiled algal cake as feedstock for dark fermentative biohydrogen production: an integrated biorefinery approach. Int J Hydrog Energy. 2014;39(18):9573–9579.
  • Zhong Y, Ruan Z, Zhong Y, et al. A self-sustaining advanced lignocellulosic biofuel production by integration of anaerobic digestion and aerobic fungal fermentation. Bioresour Technol. 2015;179:173–179.
  • Chi Z, Zheng Y, Ma J, et al. Oleaginous yeast Cryptococcus curvatus culture with dark fermentation hydrogen production effluent as feedstock for microbial lipid production. Int J Hydrog Energy. 2011;36(16):9542–9550.
  • Ratledge C, Cohen Z. Microbial and algal oils: do they have a future for biodiesel or as commodity oils ? Lipid Technol. 2008;20(7):155–160.
  • Davis R, Aden A, Pienkos PT. Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy. 2011;88(10):3524–3531.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.