556
Views
23
CrossRef citations to date
0
Altmetric
Articles

Reviewing wood biomass potentials for energy in Europe: the role of forests and fast growing plantations

, , , , , , & show all
Pages 401-410 | Received 30 Jun 2016, Accepted 18 Nov 2016, Published online: 25 Jan 2017

References

  • IEA, International Energy Agency. World Energy Outlook 2013. Paris: International Energy Agency, IEA/OECD; 2013.
  • Gasparatos A, Stromberg P, Takeuchi K. Sustainability impacts of first-generation biofuels. Animal Frontiers. 2013;3(2):12–26.
  • Koponen K, Sokka L, Pingoud K, et al. Sustainability of forest energy in Northern Europe. 2015. VTT Available from: http://www.vtt.fi/inf/pdf/technology/2015/T237.pdf
  • UNECE/FAO Joint wood energy enquiry. UNECE/FAO, Geneva (2012 September). 2011. Available from: http://www.unece.org/forests/jwee.html
  • Mantau U, Saal U, Prins K, et al. Real potential for changes in growth and use of EU forests. EUwood. Final report. Hamburg; 2010.
  • Karjalainen T, Asikainen A, Ilavsky J, et al. Estimation of energy wood potential in Europe. Finnish Forest Research Institute, Joensuu Research Centre, Working Papers of the Finnish Forest Research Institute, 2004;6:43.
  • Berndes G, Hoogwijk M, van den Broek R. The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenerg. 2003;25(1):1–28.
  • Bentsen NS, Felby C. Biomass for energy in the European Union-a review of bioenergy resource assessments. Biotechnol Biofuels. 2012;5(1):1.
  • Rettenmaier N, Schorb A, Köppen S, et al. Status of biomass resource assessments. Biomass Energy Europe (BEE) Project Report, FP7 GRANT AGREEMENT, (213417). 2008.
  • Lauri P, Havlík P, Kindermann G, et al. Woody biomass energy potential in 2050. Energ Policy. 2014;66:19–31.
  • Smeets EM, Faaij AP. Bioenergy potentials from forestry in 2050. Clim Change. 2007;81(3-4):353–390.
  • Daioglou V, Stehfest E, Wicke B, et al. Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy. 2016;8:456–470.
  • Asikainen A, Liiri H, Peltola S, et al. Forest energy potential in Europe (EU27). Vantaa: Finnish Forest Research Institute; 2008.
  • Anttila P, Karjalainen T, Asikainen A. Global potential of modern fuelwood. Vantaa: Finnish Forest Research Institute; 2009.
  • Díaz-Yáñez O, Mola-Yudego B, Anttila P, et al. Forest chips for energy in Europe: Current procurement methods and potentials. Renew Sustain Energ Rev. 2013;21:562–571.
  • Ericsson K, Nilsson LJ. Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenerg. 2006;30(1):1–15.
  • van Dam JV, Faaij APC, Lewandowski I, et al. Biomass production potentials in Central and Eastern Europe under different scenarios. Biomass Bioenerg. 2007;31(6):345–366.
  • Mola‐Yudego B, Rahlf J, Astrup R, et al. Spatial yield estimates of fast‐growing willow plantations for energy based on climatic variables in Northern Europe. GCB Bioenergy. 2016;8(6):1093–1105.
  • Aylott MJ, Casella E, Tubby I, et al. Yield and spatial supply of bioenergy poplar and willow short‐rotation coppice in the UK. New Phytol 2008;178(2):358–370.
  • Lindroth A, Båth A. Assessment of regional willow coppice yield in Sweden on basis of water availability. Forest Ecol Manag. 1999;121(1):57–65.
  • Pérez‐Cruzado C, Sanchez‐Ron D, Rodríguez‐Soalleiro R, et al. Biomass production assessment from Populus spp. short‐rotation irrigated crops in Spain. GCB Bioenergy. 2014;6(4):312–326.
  • Francescato V, Bergomi LZ, Metschina C, et al. Wood fuels handbook. Legnaro: AIEL- Italian Agriforestry Energy Association; 2008.
  • López-Rodríguez F, Atanet CP, Blázquez FC, et al. Spatial assessment of the bioenergy potential of forest residues in the western province of Spain, Caceres. Biomass Bioenerg. 2009;33(10):1358–1366.
  • Verkerk PJ, Anttila P, Eggers J, et al. The realisable potential supply of woody biomass from forests in the European Union. Forest Ecol Manag. 2011;261(11):2007–2015.
  • Borrelli P, Panagos P, Märker M, et al. Assessment of the impacts of clear-cutting on soil loss by water erosion in Italian forests: First comprehensive monitoring and modelling approach. CATENA. 2017;149:770–781.
  • Sikkema R, Junginger M, van Dam J, et al. Legal harvesting, sustainable sourcing and cascaded use of wood for bioenergy: their coverage through existing certification frameworks for sustainable forest management. Forests. 2014;5(9):2163–2211.
  • Walmsley JD, Godbold DL. Stump harvesting for bioenergy–a review of the environmental impacts. Forestry. 2010;83(1):17–38.
  • Briceño-Elizondo E, Garcia-Gonzalo J, Peltola H, et al. Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions. Forest Ecol Manag. 2006;232(1):152–167.
  • Dimitriou I, Mola-Yudego B. Poplar and willow plantations on agricultural land in Sweden: Area, yield, groundwater quality and soil organic carbon. Forest Ecol Manag. 2016. In Press. Available from: http://dx.doi.org/10.1016/j.foreco.2016.08.022
  • Mola-Yudego B. Regional potential yields of short rotation willow plantations on agricultural land in Northern Europe. Silva Fennica. 2010;44:1.
  • Mola-Yudego B, Díaz-Yáñez O, Dimitriou I. How Much Yield Should We Expect from Fast-Growing Plantations for Energy? Divergences between experiments and commercial willow plantations. BioEnerg Res. 2015;8(4):1769–1777.
  • Mola-Yudego B, González-Olabarria JR. Mapping the expansion and distribution of willow plantations for bioenergy in Sweden: Lessons to be learned about the spread of energy crops. Biomass Bioenerg. 2010;34(4):442–448.
  • Aust C, Schweier J, Brodbeck F, et al. Land availability and potential biomass production with poplar and willow short rotation coppices in Germany. GCB Bioenergy. 2014;6(5):521–533.
  • Naturvårdsverket. Sverige år 2021: vägen till ett hållbart samhälle. Stockholm: Naturvårdsverket; 1998.
  • Wiesenthal T, Mourelatou A. How much bioenergy can Europe produce without harming the environment? EEA Report 7/2006. Copenhagen; 2006.
  • United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241. 2015. Available from: https://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf
  • Hafner S. Trends in maize, rice, and wheat yields for 188 nations over the past 40 years: a prevalence of linear growth. Agric Ecosyst Environ. 2003;97(1):275–283.
  • Gerssen‐Gondelach S, Wicke B, Faaij A. Assessment of driving factors for yield and productivity developments in crop and cattle production as key to increasing sustainable biomass potentials. Food and Energy Security. 2015;4(1):36–75.
  • Mola-Yudego B. Trends and productivity improvements from commercial willow plantations in Sweden during the period 1986–2000. Biomass Bioenerg. 2011;35(1):446–453.
  • Langeveld H, Quist-Wessel F, Dimitriou I, et al. Assessing environmental impacts of short rotation coppice (SRC) expansion: model definition and preliminary results. Bioenerg Res. 2012;5(3):621–635.
  • Mola-Yudego B, Dimitriou I, Gonzalez-Garcia S, et al. A conceptual framework for the introduction of energy crops. Renew Energy. 2015;72:29–38.
  • Olsson O. European bioenergy markets: integration and price convergence. Department of Energy and Technology, Swedish University of Agricultural Sciences. 2009:51 pp. ISSN 1654-9406. Uppsala, Sweden.
  • Ericsson K, Huttunen S, Nilsson LJ, et al. Bioenergy policy and market development in Finland and Sweden. Energ Policy. 2004;32(15):1707–1721.
  • Yue D, You F, Snyder SW. Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Comput Chem Eng. 2014;66:36–56.
  • Ho DP, Ngo HH, Guo W. A mini review on renewable sources for biofuel. Bioresour Technol. 2014;169:742–749.
  • Pfeifer A, Dominković DF, Ćosić B, et al. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land: Case of Croatia. Energ Convers Manage. 2016. In Pres.
  • Heino E, Hytönen J. Pajunviljelyn pinta-ala Suomessa vuonna 2015. Sorbifolia. 2016;47:12–15.
  • Lewandowski I, Weger J, Van Hooijdonk A, et al. The potential biomass for energy production in the Czech Republic. Biomass Bioenerg. 2006;30(5):405–421.
  • Tullus A, Rytter L, Tullus T, et al. Short-rotation forestry with hybrid aspen (Populus tremula L.× P. tremuloides Michx.) in Northern Europe. Scand J For Res. 2012;27(1):10–29.
  • Cornillier C, Philippe R, Berthelot A, et al. Life Cycle Assessment of woody biomass from energy crops. 5th Forest Engineering Conference, FORMEC; Gerardmer; 2014.
  • International Poplar Commission. Poplars and Willows in Germany: Report of the National Poplar Commission. 2008-2011. 2012;28 pp. Bonn, Germany.
  • Venendaal R, Jørgensen U, Foster CA. European energy crops: a synthesis. Biomass Bioenerg. 1997;13(3):147–185.
  • Mosiej J, Karczmarczyk A, Wyporska K, & Rodzkin A. Chapter 17: Biomass Production in Energy Forests. 2012;8 pp. In: Forest and Energy EHSA 3. Available from: http://www.balticuniv.uu.se/
  • Werner C, Haas E, Grote R, et al. Biomass production potential from Populus short rotation systems in Romania. GCB Bioenergy. 2012;4(6):642–653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.