992
Views
44
CrossRef citations to date
0
Altmetric
Articles

Feedstocks for biodiesel production: Brazilian and global perspectives

ORCID Icon, &
Pages 455-478 | Received 03 Jul 2016, Accepted 09 Dec 2016, Published online: 31 Jan 2017

References

  • Chalkley AP. Diesel engines for land and marine work - Classical Reprint Series [Internet]. 2nd ed. London, UK: Forgotten Books; Available from: file:///C:/Users/Sica/Downloads/Diesel_Engines_for_Land_and_Marine_Work_1000003710.pdf.
  • Agarwal D, Kumar L, Agarwal AK. Performance evaluation of a vegetable oil fuelled compression ignition engine. Renew Energy. 2008;33:1147–1156.
  • Pousa GPAG, Santos ALF, Suarez PAZ. History and policy of biodiesel in Brazil. Energy Policy. 2007;35(11):5393–5398.
  • Saravanan N, Puhan S, Nagarajan G, et al. An experimental comparison of transesterification process with different alcohols using acid catalysts. Biomass Bioenerg. 2010;34(7):999–1005.
  • Silitonga AS, Masjuki HH, Mahlia TMI, et al. Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew Sustain Energy Rev. 2013;22:346–360.
  • Haseeb ASMA, Fazal MA, Jahirul MI, et al. Compatibility of automotive materials in biodiesel: a review. Fuel. 2011;90(3):922–931.
  • Wang M, Sabbisetti R, Elgowainy A, et al. GREET model: the greenhouse gases, regulated emissions, and energy use in transportation model. 2014.
  • EPA. Renewable fuel standard program (RFS2) regulatory impact analysis. Washington (DC): Environmental Protection Agency, Assessment and Standards Division, Office of Transportation and Air Quality; 2010.
  • CIMC. Plano Nacional sobre Mudança do Clima – PNMC. Brasília: Comitê Interministerial sobre Mudanças do Clima; 2008.
  • European Union. Directive 2003/87/EC, Oct. Establishing a scheme for greenhouse gas emission allowance trading within the Community and amending Council Directive 96/61/EC. 2003.
  • Johnson E. Goodbye to carbon neutral: Getting biomass footprints right. Environ Impact Assess Rev. 2009;29(3):165–168.
  • REN21. Renewables 2015 - global status report. Renewable energy policy network for the 21st century. France.
  • Brazil. Federal Law number 11097. Dispõe sobre a introdução do biodiesel na matriz energética brasileira; altera as Leis n. 9478, de 6 de agosto de 1997, 9847, de 26 de outubro de 1999 e 10636, de 30 de dezembro de 2002; e dá outras providências; 2005.
  • ANP. Boletim mensal do biodiesel: Jan-Dez [Internet]. (2015). Available from: http://www.anp.gov.br/wwwanp/publicacoes/boletins-anp/2386-boletim-mensal-do-biodiesel.
  • Dias LA dos S, Missio RF, Ribeiro R da M, et al. Agrocombustíveis: perspectivas futuras. Bahia Análise & Dados. 2009;18(4):539–547.
  • Bergmann J, Tupinambá D, Costa OY, et al. Biodiesel production in Brazil and alternative biomass feedstocks. Renew Sustain Energy Rev. 2013;21:411–420.
  • Karmakar A, Karmakar S, Mukherjee S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol. [Internet]. 2010;101(19):7201–7210. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0960852410007650.
  • FAO. Production, crops [Internet]. FAOStat. 2012. Available from: http://faostat3.fao.org/download/Q/QC/E.
  • FAO. Food Outlook: Biannual report on global food markets [Internet]. Food and agriculture organization of the United Nations. Rome, Italy: Trade and Markets Division. Available from: http://www.fao.org/docrep/019/I3751E/I3751E.pdf.
  • Organisation for Economic Co-operation and Development, Food and Agriculture Organization of the United Nations. Chapter 3: biofuels. In: OECD-FAO agricultural outlook 2011-2020. Paris: OECD; 2011.
  • Kant P, Wu S. The extraordinary collapse of jatropha as a global biofuel. Environ Sci Technol. 2011;45(17):7114–7115.
  • Marchetti JM, Miguel VU, Errazu AF. Techno-economic study of different alternatives for biodiesel production. Fuel Process Technol. 2008;89(8):740–748.
  • USDA. Oilseeds: world markets and trade. Washington (DC): U.S. Department of Agriculture, Office of Global Analysis, Foreign Agricultural Service; p. 35. 2014.
  • Flammini A. Biofuels and the underlying causes of high food prices. Rome: Global Bioenergy Partnership, Food and Agriculture Organization of the United Nations; 2008.
  • MAPA. Ministério da Agricultura Pecuária e Abastecimento. Brazilian Agroenergy Plan 2006-2011 [Internet]. Brasília: Secretariat for Production and Agroenergy, Embrapa Publishing House. Available from: http://www.agricultura.gov.br/arq_editor/file/Ministerio/planos eprogramas/plano nacional de agroenergia 20062011 ingles.pdf.
  • CONAB. Acompanhamento da Safra Brasileira: Grãos 2016/2017. Brasília (DF): Segundo Levantamento; 2016.
  • Hilliard J, Daynard T. Measurement of protein and oil in grains and soybeans with reflected near–infrared light. Can Inst Food Sci Technol J. [Internet]. 1976;9(1):11–14. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0315546376735855.
  • FAO. Production, crops processed [Internet]. FAOStat. 2013. Available from: http://faostat3.fao.org/compare/E.
  • USDA. Oilseeds: world markets and trade. Washington (DC): U.S. Department of Agriculture, Office of Global Analysis, Foreign Agricultural Service; p. 36. 2015.
  • Ribeiro APB, Grimaldi R, Gioielli LA, et al. Zero trans fats from soybean oil and fully hydrogenated soybean oil: Physico-chemical properties and food applications. Food Res Int. [Internet]. 2009;42(3):401–410. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0963996909000179.
  • Ting CC, Chen CC. Viscosity and working efficiency analysis of soybean oil based bio-lubricants. Meas J Int Meas Confed. 2011;44(8):1337–1341.
  • Ferrari RA, Oliveira V da S, Scabio A. Biodiesel de soja : taxa de conversão em ésteres etílicos, caracterização físico-química e consumo em gerador de energia. Química Nov. 2005;28:19–23.
  • USDA. Biofuels annual: argentina. Buenos Aires: United States Department of Agriculture, Office of Global Analysis, Foreign Agricultural Service; 2014.
  • EIA. Monthly biodiesel production report: january. Washington (DC): U.S. Energy Information Administration, Department of Energy; 2015.
  • Song YS, Frias J, Martinez-Villaluenga C, et al. Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food Chem. 2008;108(2):571–581.
  • Cools S, Van den Broeck W, Vanhaecke L, et al. Feeding soybean meal increases the blood level of isoflavones and reduces the steroidogenic capacity in bovine corpora lutea, without affecting peripheral progesterone concentrations. Anim Reprod Sci. 2014;144(3–4):79–89.
  • Hernández MD, Martínez FJ, Jover M, et al. Effects of partial replacement of fish meal by soybean meal in sharpsnout seabream (Diplodus puntazzo) diet. Aquaculture. 2007;263(1–4):159–167.
  • Hojilla-Evangelista MP. Adhesion properties of plywood glue containing soybean meal as an extender. JAOCS J Am Oil Chem Soc. 2010;87(9):1047–1052.
  • Mourad AL, Walter A. The energy balance of soybean biodiesel in Brazil: a case study. Biofuels Bioprod Biorefining. 2011;5(2):185–197.
  • Rocha MH, Capaz RS, Lora EES, et al. Life cycle assessment (LCA) for biofuels in Brazilian conditions: A meta-analysis. Renew Sustain Energy Rev. [Internet]. 2014;37:435–459. Available from: http://dx.doi.org/10.1016/j.rser.2014.05.036.
  • Hill J, Nelson E, Tilman D, et al. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA. 2006;103(30):11206–11210.
  • USDA. Biofuel annual: European union. The Hague: United States Department of Agriculture, Office of Global Analysis, Foreign Agricultural Service; 2013. (GAIN Report Number NL3034).
  • CONAB. Acompanhamento da Safra Brasileira: Grãos 2013/2014, Sétimo Levantamento. Brasília (DF): Companhia Nacional de Abastecimento (CONAB), Ministério da Agricultura, Pecuária e Abastecimento (MAPA); 2014.
  • O'Shea CJ, Mc Alpine PO, Solan P, et al. The effect of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower–finisher pigs. Anim Feed Sci Technol. 2014;189:88–97.
  • Kaur R, Garcia SC, Fulkerson WJ, et al. Degradation kinetics of leaves, petioles and stems of forage rape (Brassica napus) as affected by maturity. Anim Feed Sci Technol. 2011;168(3–4):165–178.
  • Nicol AM, Young BA. Effects of the ingestion of warm, cold and frozen food on thermal balance in cattle. Livest Prod Sci. 1989;23(1–2):107–115.
  • MAPA.Ministério da Agricultura Pecuária e Abastecimento. Balanço Nacional de Cana-de-açúcar e Agroenergia. Brasília (DF): Secretaria de Produção e Agroenergia; 2007.
  • He R, Ju X, Yuan J, et al. Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Res Int. 2012;49(1):432–438.
  • Rodrigues IM, Coelho JFJ, Carvalho MGVS. Isolation and valorisation of vegetable proteins from oilseed plants: methods, limitations and potential. J Food Eng. 2012;109(3):337–346.
  • Marjanović -Jeromela A, Marinković R, Mijić A, et al. Oil yield stability of winter rapeseed (Brassica napus L.) genotypes. Agric Conspec Sci. 2008;73(4):217–220.
  • Tomm GO. Cultivo de Canola [Internet]. Sist Produção. 2007. Available from: https://www.spo.cnptia.embrapa.br/conteudo?p_p_id=conteudoportlet_WAR_sistemasdeproducaolf6_1ga1ceportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&p_r_p_-76293187_sistemaProducaoId=3703&p_r_p_-996514994_topicoId=3.
  • Rizwanul Fattah IM, Masjuki HH, Liaquat AM, et al. Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions. Renew Sustain Energy Rev. 2013;18:552–567.
  • Tomm GO, Paulo EPF, Jozeneida LP de A, et al. Panorama atual e indicações para aumento de eficiência da produção de canola no Brasil [Internet]. Embrapa Trigo. 2009. Available from: http://www.cnpt.embrapa.br/biblio/do/p_do118.htm.
  • Menichetti E, Otto M. Energy balance & greenhouse gas emissions of biofuels from a life cycle perspective [Internet]. In: Howarth RW, Bringezu S Editors. Biofuels: environmental consequences and interactions with changing land use. Ithaca (NY): Scientific Committee on Problems of the Environment (SCOPE); 2009. p. 81–109. Available from: http://cip.cornell.edu/DPubS?service=UI&version=1.0&verb=Display&page=current&handle=scope.
  • Gomes Jr. RA, Gurgel F de L, Peixoto L de A, et al. Evaluation of interspecific hybrids of palm oil reveals great genetic variability and potential selection gain. Ind Crops Prod. 2014;52:512–518.
  • Mozzon M, Pacetti D, Lucci P, et al. Crude palm oil from interspecific hybrid Elaeis oleifera×Elaeis guineensis: Fatty acid regiodistribution and molecular species of glycerides. Food Chem. 2013;141(1):245–252.
  • Brasil. Zoneamento Agroecológico do Dendezeiro para as Áreas Desmatadas da Amazônia Legal. Rio de Janeiro (RJ): Embrapa Solos; 2010.
  • CONAB. Relatório de Gestão do Exercício de 2011. Brasília (DF): Companhia Nacional de Abastecimento (CONAB), Ministério da Agricultura, Pecuária e Abastecimento (MAPA); 2012.
  • Embrapa. Empresa Brasileira de Pesquisa Agropecuária. Unidades da Embrapa fortalecem pesquisas para produção de biocombustíveis. Agroenergético. 2011;24:22.
  • de Souza SP, Pacca S, de Ávila MT, et al. Greenhouse gas emissions and energy balance of palm oil biofuel. Renew Energy. 2010;35(11):2552–2561.
  • Embrapa. A cultura do dendezeiro na Amazônia Brasileira. Belém (PA); Manaus (AM): Embrapa Amazônia Ocidental, Embrapa Amazônia Oriental, Ministério da Agricultura, Pecuária e Abastecimento; 2010.
  • Tan KT, Lee KT, Mohamed AR, et al. Palm oil: Addressing issues and towards sustainable development. Renew Sustain Energy Rev. 2009;13(2):420–427.
  • Adhikari P, Zhu X-M, Gautam A, et al. Scaled-up production of zero-trans margarine fat using pine nut oil and palm stearin. Food Chem. 2010;119(4):1332–1338.
  • Keng PS, Basri M, Zakaria MRS, et al. Newly synthesized palm esters for cosmetics industry. Ind Crops Prod. 2009;29(1):37–44.
  • Henderson J, Osborne DJ. The oil palm in all our lives: how this came about. Endeavour. 2000;24(2):63–68.
  • ANP. Boletim mensal do biodiesel: Jan-Dez [Internet]. 2014. Available from: http://www.anp.gov.br/?pg=79404&m=&t1=&t2=&t3=&t4=&ar=&ps=&1455913381471.
  • USDA. Biofuels annual: Thailand. Bangkok: United States Department of Agriculture, Office of Global Analysis, Foreign Agricultural Service; (GAIN Report Number: TH9047) [Internet] Available from: http://www.globalbioenergy.org/uploads/media/0903_GAIN_Report_-_thai.biofuel.food.pdf.
  • USDA. Biofuels annual: Indonesia. Jakarta: United States Department of Agriculture, Office of Global Analysis, Foreign Agricultural Service; 2014 (GAIN Report Number: ID1420).
  • USDA. Biofuel annual: European union. The Hague: United States Department of Agriculture, Office of Global Analysis, Foreign Agricultural Service; 2014. (GAIN Report Number: NL4025).
  • Embrapa. Qualidade do biodiesel discutida em audiência pública na Câmara. Agroenergético. 2011;25:19.
  • Embrapa. Seminário discute oportunidades e limitações do complexo agroindustrial do biodiesel no Brasil. Agroenergético. 2011;27:30.
  • César A da S, Batalha MO, Zopelari ALMS. Oil palm biodiesel: Brazil's main challenges. Energy. 2013;60:485–491.
  • FAO. Production, live animal, Brazil, cattle [Internet]. FAOStat. 2013. Available from: http://faostat3.fao.org/download/Q/QL/E.
  • FAO. Production, livestock processed [Internet]. FAOStat. 2013. Available from: http://faostat3.fao.org/download/Q/QP/E.
  • Andrade Filho M. Aspectos técnicos e econômicos na produção do biodiesel: o caso do sebo bovino como matéria prima [in Portuguese] [Master thesis – Graduate Program in Regulation of the Energy Industry]. Salvador (BA): Universidade Salvador - UNIFACS; 2007.
  • Scot Consultoria. Preço do sebo bovino subiu 30% no Brasil Central em um ano [Internet]. BiodieselBr. 2016. Available from: https://www.biodieselbr.com/noticias/materia-prima/sebo/preco-sebo-bovino-subiu-30-brasil-central-ano-211116.htm.
  • Liu S, Wang Y, Oh J-H, et al. Fast biodiesel production from beef tallow with radio frequency heating. Renew Energy. 2011;36(3):1003–1007.
  • da Cunha ME, Krause LC, Moraes MSA, et al. Beef tallow biodiesel produced in a pilot scale. Fuel Process Technol. 2009;90(4):570–575.
  • Teixeira LSG, Couto MB, Souza GS, et al. Characterization of beef tallow biodiesel and their mixtures with soybean biodiesel and mineral diesel fuel. Biomass Bioenerg. 2010;34(4):438–441.
  • Manzano-Agugliaro F, Sanchez-Muros MJ, Barroso FG, et al. Insects for biodiesel production. Renew Sustain Energy Rev. 2012;16(6):3744–3753.
  • IBGE. Produção Agrícola Municipal - Culturas temporárias e Permanentes. Rio de Janeiro (RJ): Ministério do Planejamento, Orçamento e Gestão; 2012.
  • Lacape J-M, Gawrysiak G, Cao T-V, et al. Mapping QTLs for traits related to phenology, morphology and yield components in an inter-specific Gossypium hirsutum×G. barbadense cotton RIL population. F Crop Res. 2013;144:256–267.
  • Morales A., Galina M., Jimenez S, et al. Improvement of biosustainability of a goat feeding system with key supplementation. Small Rumin. Res. 2000;35(2):97–105.
  • Habib G, Khan NA, Ali M, et al. In situ ruminal crude protein degradability of by-products from cereals, oilseeds and animal origin. Livest Sci. 2013;153(1–3):81–87.
  • Paim T do P, Viana P, Brandão E, et al. Carcass traits and fatty acid profile of meat from lambs fed different cottonseed by-products. Small Rumin Res. 2014;116(2–3):71–77.
  • Vaughn SF, Deppe NA, Berhow MA, et al. Lesquerella press cake as an organic fertilizer for greenhouse tomatoes. Ind Crops Prod. 2010;32(2):164–168.
  • Rouanet JM, Henry O, Caporiccio B, et al. Comparative study of nutritional qualities of defatted cottonseed and soybean meals. Food Chem. 1989;34(3):203–213.
  • Gomes RS, N. Wilson P, Coates WE, et al. Cotton (Gossypium) plant residue for industrial fuel. Ind Crops Prod. 1997;7(1):1–8.
  • Pope OA, Ware JO. Effect of variety, location and season on oil, protein, and fuzz of cottonseed and on fiber problems of lint. Washington (DC): United States Department of Agriculture, Economic Research Service; 1945.
  • Lawhon JT, Cater CM, Mattil KF. Evaluation of the food use potential of sixteen varieties of cottonseed. J Am Oil Chem Soc. 1977;54(2):75–80.
  • de Faria GMP, Oliveira M da S, de Carvalho LP, et al. Gains from selection for oil content in cotton. Ind Crops Prod. 2013;51:370–375.
  • Balalić I, Zorić M, Branković G, et al. Interpretation of hybrid×sowing date interaction for oil content and oil yield in sunflower. F Crop Res. 2012;137:70–77.
  • Zheljazkov VD, Vick BA, Baldwin BS, et al. Oil productivity and composition of sunflower as a function of hybrid and planting date. Ind Crops Prod. 2011;33(2):537–543.
  • Lira MA, Carvalho HWL, Chagas MCM, et al. Avaliação das potencialidades da cultura do girassol, como alternativa de cultivo no semiárido nordestino [Internet]. In: Documentos. Natal (RN): Empresa de Pesquisa Agropecuária do RN (EMPARN); 2011. p. 40. Available from: http://adcon.rn.gov.br/ACERVO/EMPARN/DOC/DOC000000000000381.PDF.
  • Carvalho IS, Miranda I, Pereira H. Evaluation of oil composition of some crops suitable for human nutrition. Ind Crops Prod. 2006;24(1):75–78.
  • Soares LHB, Araújo ES, Alves BRJ, et al. Eficiência energética comparada das culturas do girassol e soja, com aptidão para a produção de biodiesel no Brasil. Seropédica (RJ): Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA; 2008.
  • CONAB. Acompanhamento da Safra Brasileira: Grãos 2015/2016, Décimo Segundo Levantamento. Brasília (DF): Companhia Nacional de Abastecimento; 2016.
  • CONAB. Acompanhamento da Safra Brasileira: Grãos 2015/2016, Nono Levantamento. Brasília (DF): Companhia Nacional de Abastecimento; 2016.
  • Oliveira ACB, Claudio Guilherme Portela, Carvalho CGP, et al. Avaliação de Genótipos de Girassol no RS. Pelotas (RS): Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA; 2009.
  • Beltrão NE de M, Oliveira MIP. Oleaginosas e seus óleos: Vantagens e Desvantagens para Produção de Biodiesel. Campina Grande (PB): Embrapa Algodão; 2008.
  • SABESP. Programa de Reciclagem de Óleo de Fritura da SABESP [Internet]. Available from: http://site.sabesp.com.br/uploads/file/asabesp_doctos/programa_reciclagem_oleo_completo.pdf.
  • EPE. Balanço Energético Nacional 2014: Ano base 2013. Rio de Janeiro: Empresa de Pesquisa Energética, Ministério de Minas e Energia; 2014.
  • Enweremadu CC, Rutto HL. Combustion, emission and engine performance characteristics of used cooking oil biodiesel—a review. Renew Sustain Energy Rev. 2010;14(9):2863–2873.
  • Banerjee A, Chakraborty R. Parametric sensitivity in transesterification of waste cooking oil for biodiesel production—a review. Resour Conserv Recycl. 2009;53(9):490–497.
  • Araujo VKWS, Hamacher S, Scavarda LF. Economic assessment of biodiesel production from waste frying oils. Bioresour Technol. 2010;101(12):4415–4422.
  • Ogunniyi D. Castor oil: a vital industrial raw material. Bioresour Technol. 2006;97(9):1086–1091.
  • da Silva César A, Otávio Batalha M. Biodiesel production from castor oil in Brazil: A difficult reality. Energy Policy. 2010;38(8):4031–4039.
  • Severino LS, Auld DL. Seed yield and yield components of castor influenced by irrigation. Ind Crops Prod. 2013;49:52–60.
  • Lima RLS, Severino LS, Sampaio LR, et al. Blends of castor meal and castor husks for optimized use as organic fertilizer. Ind Crops Prod. 2011;33(2):364–368.
  • Anandan S, Kumar GKA, Ghosh J, et al. Effect of different physical and chemical treatments on detoxification of ricin in castor cake. Anim Feed Sci Technol. 2005;120(1–2):159–168.
  • de Oliveira AS, Campos JMS, Oliveira MRC, et al. Nutrient digestibility, nitrogen metabolism and hepatic function of sheep fed diets containing solvent or expeller castorseed meal treated with calcium hydroxide. Anim Feed Sci Technol. 2010;158(1–2):15–28.
  • Diniz LL, Valadares Filho SC, de Oliveira AS, et al. Castor bean meal for cattle finishing: 1—Nutritional parameters. Livest Sci. 2011;135(2–3):153–167.
  • Severino LS. O Que Sabemos sobre a Torta de Mamona. Campina Grande (PB): Embrapa Algodão; 2005.
  • UFV. Oferta de oleaginosas no Brasil. Bioinformativo. 2011;3:16.
  • CastorOil. Comprehensive castor oil report: a report on castor oil & castor oil derivatives. Tamilnadu: Clixoo Solutions Pvt; 2010.
  • Nitske WR, Wilson CM. Rudolf diesel, pioneer of the age of power. Norman (OK): University of Oklahoma Press; 1965.
  • Torres AM, Barros GG, Palacios SA, et al. Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res Int. 2014;62:11–19.
  • Bishi SK, Kumar L, Dagla MC, et al. Characterization of Spanish peanut germplasm (Arachis hypogaea L.) for sugar profiling and oil quality. Ind Crops Prod. 2013;51:46–50.
  • Cai C, Song L, Wang Y, et al. Assessment of the feasibility of including high levels of rapeseed meal and peanut meal in diets of juvenile crucian carp (Carassius auratus gibelio♀×Cyprinus carpio♂): Growth, immunity, intestinal morphology, and microflora. Aquaculture. 2013;410–411:203–215.
  • Bogino P, Nievas F, Banchio E, et al. Increased competitiveness and efficiency of biological nitrogen fixation in peanut via in-furrow inoculation of rhizobia. Eur J Soil Biol. 2011;47(3):188–193.
  • Presbitero AL, Escalante MC, Rose CW, et al. Erodibility evaluation and the effect of land management practices on soil erosion from steep slopes in Leyte, the Philippines. Soil Technol. 1995;8(3):205–213.
  • Abdalla AL, Silva Filho JC da, Godoi AR de, et al. Utilização de subprodutos da indústria de biodiesel na alimentação de ruminantes. Rev Bras Zootec. 2008;37(spe):260–268.
  • IEA. Amendoim: produção, exportação e a safra 2011/2012. Análises e Indicadores do Agronegócio (Vol. 11) [Internet]. São Paulo (SP): Instituto de Economia Agrícola (IEA); 2011. Available from: http://www.iea.sp.gov.br/out/LerTexto.php?codTexto=12242
  • ANP. Boletim mensal do biodiesel: Jan-Dez [Internet]. 2013. Available from: http://www.anp.gov.br/?pg=79404&m=&t1=&t2=&t3=&t4=&ar=&ps=&1455913381471.
  • Achten WMJ, Verchot L, Franken YJ, et al. Jatropha bio-diesel production and use. Biomass Bioenerg. 2008;32(12):1063–1084.
  • Contran N, Chessa L, Lubino M, et al. State-of-the-art of the Jatropha curcas productive chain: from sowing to biodiesel and by-products. Ind Crops Prod. 2013;42:202–215.
  • Brittaine R, Lutaladio N. Jatropha: a smallholder bioenergy crop - the potential for pro-poor development. Food and Agriculture Organization of the United Nations, Rome.
  • Thanapimmetha A, Luadsongkram A, Titapiwatanakun B, et al. Value added waste of Jatropha curcas residue: Optimization of protease production in solid state fermentation by Taguchi DOE methodology. Ind Crops Prod. 2012;37(1):1–5.
  • Chandra R, Vijay VK, Subbarao PMV, et al. Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Appl Energy. 2012;93:148–159.
  • Fairless D. Biofuel: the little shrub that could—maybe. Nature. 2007;449(7163):652–655.
  • Singh K, Singh B, Verma SK, et al. Jatropha curcas: a ten year story from hope to despair. Renew Sustain Energy Rev. 2014;35:356–360.
  • Valdes-Rodriguez OA, Sánchez-Sánchez O, Pérez-Vázquez A, et al. Soil texture effects on the development of Jatropha seedlings – Mexican variety “piñón manso.” Biomass Bioenerg. 2011;35(8):3529–3536.
  • dos Santos CM, Verissimo V, Wanderley Filho HC de L, et al. Seasonal variations of photosynthesis, gas exchange, quantum efficiency of photosystem II and biochemical responses of Jatropha curcas L. grown in semi-humid and semi-arid areas subject to water stress. Ind Crops Prod. 2013;41:203–213.
  • Singh B, Singh K, Rejeshwar Rao G, et al. Agro-technology of Jatropha curcas for diverse environmental conditions in India. Biomass Bioenerg. 2013;48:191–202.
  • Everson CS, Mengistu MG, Gush MB. A field assessment of the agronomic performance and water use of Jatropha curcas in South Africa. Biomass Bioenerg. 2013;59:59–69.
  • Beltrão NE de M, Severino LS, Suinaga FA, et al. Pinhão Manso recomendação técnica sobre o plantio no Brasil. Campina Grande (PB): Embrapa Algodão; 2007.
  • Yamane K, Lü N, Ohnishi O. Chloroplast DNA variations of cultivated radish and its wild relatives. Plant Sci. 2005;168(3):627–634.
  • Sundermeier A. Nutrient management with cover crops. (L. Stivers, Ed.), Journal of the NACAA (Vol. 3) [internet]. Maroa, IL: National Association of County Agricultural Agents (NACAA); 2010. Available from: http://www.nacaa.com/journal/index.php?jid=45
  • Crusciol CAC, Cottica RL, Lima E do V, et al. Persistência de palhada e liberação de nutrientes do nabo forrageiro no plantio direto. Pesqui. Agropecuária Bras. 2005;40(2):161–168.
  • Bunte R, Muller J, Friedt W. Genetic variation and response to selection for resistance to root-knot nematodes in oil radish (Raphanus sativus ssp. oleiferus). Plant Breed. 1997;116(3):263–266.
  • Kubota A, Hoshiba K, Bordon J. Green-manure turnip for soybean based no-tillage farming systems in eastern Paraguay. Sci Agric. 2005;62(2):150–158.
  • Calegari A. Plantas para adubação verde de inverno no sudoeste do Paraná. Boletim Técnico (Vol. 35). Londrina (PR): Instituto Agronômico do Paraná (IAPAR); 1990.
  • Ávila RN de A, Sodré JR. Physical–chemical properties and thermal behavior of fodder radish crude oil and biodiesel. Ind Crops Prod. 2012;38:54–57.
  • Dambiski L. Síntese de biodiesel de óleo de nabo forrageiro empregando metanol supercrítico [in Portuguese] [Master thesis – Graduate Program in Mechanical and Materials Engineering]. Curitiba (PR): Universidade Tecnológica Federal do Paraná - UTFPR; 2007.
  • Chammoun N, Geller DP, Das KC. Fuel properties, performance testing and economic feasibility of Raphanus sativus (oilseed radish) biodiesel. Ind Crops Prod. 2013;45:155–159.
  • Ribeiro RFL, Soares VC, Costa LM, et al. Efficient removal of Cd2+ from aqueous solutions using by-product of biodiesel production. J Hazard Mater. 2012;237–238:170–179.
  • Souza ADV de, Fávaro SP, Ítavo LCV, et al. Caracterização química de sementes e tortas de pinhão-manso, nabo-forrageiro e crambe. Pesqui Agropecuária Bras. 2009;44(10):1328–1335.
  • Sá RO. Variabilidade Genética Entre Progânies De Meios Irmãos De Nabo Forrageiro (Raphanus sativus L. var. Oleiferus) cultivar CATI AL 1000 [in Portuguese] [Master thesis – Graduate Program in Agronomy: Agriculture]. Botucatu (SP): Universidade Estadual Paulista “Júlio De Mesquita Filho” - UNESP, Faculdade de Ciências Agronômicas; 2005.
  • Mikkola H, Pahkala K, Ahokas J. Energy consumption in barley and turnip rape cultivation for bioethanol and biodiesel (RME) production. Biomass Bioenerg. 2011;35(1):505–515.
  • Ghisi M, Chaves ES, Quadros DPC, et al. Simple method for the determination of Cu and Fe by electrothermal atomic absorption spectrometry in biodiesel treated with tetramethylammonium hydroxide. Microchem J. 2011;98(1):62–65.
  • Mastebroek HD, Wallenburg SC, van Soest LJM. Variation for agronomic characteristics in crambe (Crambe abyssinica Hochst. ex Fries). Ind Crops Prod. 1994;2(2):129–136.
  • Silva TRB da, Reis AC de S, Maciel CD de G. Relationship between chlorophyll meter readings and total N in crambe leaves as affected by nitrogen topdressing. Ind Crops Prod. 2012;39:135–138.
  • Falasca SL, Flores N, Lamas MC, et al. Crambe abyssinica: An almost unknown crop with a promissory future to produce biodiesel in Argentina. Int J Hydrogen Energ. 2010;35(11):5808–5812.
  • Jasper SP, Biaggioni MAM, Silva PRA, et al. Análise energética da cultura do crambe (Crambe abyssinica Hochst) produzida em plantio direto. Eng Agríc Jaboticabal. 2010;30(3):395–403.
  • Jasper SP, Biaggioni MAM, Silva PRA. Comparação do custo de produção do crambe (Crambe abyssinica Hochst) com outras culturas oleaginosas em sistemas de plantio direto. Rev Energ na Agric. 2010;25(4):141–153.
  • Castleman G, Pymer S, Greenwood C. Potential for Crambe (C. abyssinica) in Mallee/Wimmera of Australia [Internet]. In: Proceedings of the 10th International Rapeseed Congress; The Regional Institute, Canberra, Australia; 1999. Available from: http://www.regional.org.au/au/gcirc/2/155.htm#TopOfPage
  • Liu Y, Smits B, Steg A, et al. Crambe meal: digestibility in pigs and rats in comparison with rapeseed meal. Anim Feed Sci Technol. 1995;52(3–4):257–270.
  • Ledoux D., Belyea R., Wallig M., et al. Effects of feeding crambe meal upon intake, gain, health and meat quality of broiler chicks. Anim Feed Sci Technol. 1999;76(3–4):227–240.
  • Jasper SP. Cultura do crambe (Crambe abyssinica Hochst): avaliação energética, de custo de produção e produtividade em sistema de plantio direto [in Portuguese] [Doctorate thesis – Graduate Program in Agronomy]. Botucatu (SP): Universidade Estadual Paulista “Júlio De Mesquita Filho” - UNESP, Faculdade de Ciências Agronômicas; 2009.
  • Wazilewski WT, Bariccatti RA, Martins GI, et al. Study of the methyl crambe (Crambe abyssinica Hochst) and soybean biodiesel oxidative stability. Ind Crops Prod. 2013;43:207–212.
  • Rodrigues HDS. Obtenção de ésteres etílicos e metílicos, por reações de transesterificação, a partir do óleo da palmeira Latino Americana macaúba - Acrocomia aculeata [in Portuguese] [Doctorate thesis – Graduate Program in Chemistry]. Ribeirao Preto (SP): Universidade de São Paulo - USP, Faculdade de Filosofia, Ciências e Letras; 2007.
  • Berton LHC, de Azevedo Filho JA, Siqueira WJ, et al. Seed germination and estimates of genetic parameters of promising macaw palm (Acrocomia aculeata) progenies for biofuel production. Ind Crops Prod. 2013;51:258–266.
  • Abreu IS, Carvalho CR, Carvalho GMA, et al. First karyotype, DNA C-value and AT/GC base composition of macaw palm (Acrocomia aculeata, Arecaceae) - a promising plant for biodiesel production. Aust J Bot. 2011;59(2):149.
  • Pimentel LD, Motoike SY, Costa EWA, et al. Estimativa de custo de produção e viabilidade econômica do cultivo da palmeira macaúba (Acrocomia aculeata) para produção de óleo vegetal [Internet]. Viçosa (MG): ENTABAN and Departamento de Fitotecnia, Universidade Federal de Viçosa, Brazil. Available from: http://entabanbrasil.com.br/downloads/Estudo-de-Viabilidade-Economica-Macauba-Leonardo-Pimentel.pdf.
  • Pires TP, dos Santos Souza E, Kuki KN, et al. Ecophysiological traits of the macaw palm: a contribution towards the domestication of a novel oil crop. Ind Crops Prod. 2013;44:200–210.
  • Bandeira FS. Cultivo in vitro e embriogênese somática de embriões zigóticosde macaúba (Acrocomia aculeata (Jacq.) Loddiges) [in Portuguese] [Doctorate thesis – Graduate Program in Forest Science]. Viçosa (MG): Universidade Federal de Viçosa – UFV; 2008.
  • Galvani F, Fernandes J. Extração mecânica da polpa da bocaiuva coletada na região de Miranda, MS. Corumbá (MS): Embrapa Pantanal; 2010.
  • Hiane PA, Ramos Filho MM, Ramos MIL, et al. Bocaiúva, Acrocomia Aculeata (Jacq.) Lodd., Pulp and Kernel Oils: Characterization and Fatty Acid Composition. Brazilian J Food Technol. 2005;8(3):256–259.
  • Vieira SS, Magriotis ZM, Santos NAV, et al. Macauba palm (Acrocomia aculeata) cake from biodiesel processing: An efficient and low cost substrate for the adsorption of dyes. Chem Eng J. 2012;183:152–161.
  • Carneiro H, Pereira J da C. Macaúba: co-produtos de biodiesel na alimentação animal. Panor. do Leite (Vol. 3:29), [Internet]. Juiz de Fora (MG): Centro de Inteligência do Leite; 2009. Available from: http://www.cileite.com.br/panorama/produtos29.html.
  • Clement, CR, Lleras Pérez E, van Leeuwen, J. O potencial das palmeiras tropicais no Brasil: acertos e fracassos das últimas décadas. Agrociencias. 2005;9(1–2):67–71.
  • Rodrigues F. Conferência BIODIESEL 2011: as matérias-primas do biodiesel em 2020. Agroenergético. [Internet]. 2011;27:28p. Available from: http://www.infoteca.cnptia.embrapa.br/bitstream/doc/1006967/1/Ed27112011.pdf.
  • Carvalho AKF, Da Rós PCM, Teixeira LF, et al. Assessing the potential of non-edible oils and residual fat to be used as a feedstock source in the enzymatic ethanolysis reaction. Ind Crops Prod. 2013;50:485–493.
  • Pinheiro CUB. The babassu palm (Orbignya phalerata Martius) and its exploitation in the Cocais region of Maranhão, north-eastern Brazil. In: Alexiades MN, Shanley P Editors. Forest products, livelihoods, and conservation: case studies of non-timber forest product systems. Bogor Indonesia: Center for International Forestry Research; 2004. p. 157–173.
  • Teixeira MA. Babassu—a new approach for an ancient Brazilian biomass. Biomass Bioenerg. 2008;32(9):857–864.
  • Teixeira MA. Estimativa do potencial energético na indústria do óleo de babaçu no Brasil [Internet]. In: Proceedings of the 3rd Encontro de Energia no Meio Rural; Campinas, SP, Brazil: Agrener; 2013. Available from: http://www.proceedings.scielo.br/scielo.php?pid=MSC0000000022000000200045&script=sci_arttext.
  • CGEE. Avaliação de biodiesel no Brasil. Brasília: Centro de Gestão e Estudos Estratégicos; 2004.
  • Homma AKO. Extrativismo vegetal ou plantio: qual a opção para a Amazônia? Estud Avançados. 2012;26(74):167–186.
  • IBGE. Produção da Extração Vegetal e da Silvicultura. 26th ed. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística (IBGE); 2011.
  • Baruque Filho EA, Baruque M da GA, Freire DMG, et al. Ethanol from babassu coconut starch: technical and economical aspects. Appl Biochem Biotechnol. 70–1998;72(1):877–886.
  • Teixeira MA, da Graça Carvalho M. Regulatory mechanism for biomass renewable energy in Brazil, a case study of the Brazilian Babassu oil extraction industry. Energy. 2007;32(6):999–1005.
  • Souza MHSL, Monteiro CA, Figueredo PMS, et al. Ethnopharmacological use of babassu (Orbignya phalerata Mart) in communities of babassu nut breakers in Maranhão, Brazil. J Ethnopharmacol. 2011;133(1):1–5.
  • Albiero D, Maciel AJ da S, Lopes AC, et al. Proposta de uma máquina para colheita mecanizada de babaçu (Orbignya phalerata mart.) para a agricultura familiar. Acta Amaz. 2007;37(3):337–334.
  • May PH, Anderson AB, Balick MJ, et al. Subsistence benefits from the babassu palm (Orbignya martiana). Econ Bot. 1985;39(2):113–129.
  • Lima JR de O, Silva RB da, Silva CCM da, et al. Biodiesel de babaçu (Orbignya sp.) obtido por via etanólica. Quim Nova. 2007;30(3):600–603.
  • Barnwal BK, Sharma MP. Prospects of biodiesel production from vegetable oils in India. Renew Sustain Energy Rev. 2005;9(4):363–378.
  • Campos A. A saga do babaçu - quebradeiras de coco lutam pela sobrevivência de sua atividade [The saga of babassu - coconut breakers struggle for survival of their activity]. Probl Bras. 2006;374:38–41.
  • Porro N, Veiga I, Mota D. Traditional communities in the Brazilian Amazon and the emergence of new political identities: the struggle of the quebradeiras de coco babaçu —babassu breaker women. J Cult Geogr. 2011;28(1):123–146.
  • Ramalho CI. Licuri (Syagrus coronata) [Internet]. Lavoura xerofila, UFPB/CCA., 11. Available from: http://www.cca.ufpb.br/lavouraxerofila/pdf/licuri.pdf.
  • Macedo I de C, Nogueira LAH. Biocombustíveis - 02. In: Cadernos NAE - Processos estratégicos de longo prazo. Brasília: Núcleo de Assuntos Estratégicos da Presidência da República, Secretaria de Comunicação de Governo e Gestão Estratégica; 2004. p. 233.
  • Barros TD, Jardine JG. Buriti [Internet]. Agência Embrapa de Informação Tecnológica (AGEITEC); Embrapa Agroenergia. Available from: http://www.agencia.cnptia.embrapa.br/gestor/agroenergia/arvore/CONT000fbl23vmz02wx5eo0sawqe3flbr6im.html.
  • Mourad AL. Principais culturas para obtenção de óleos vegetais combustíveis no Brasil [Internet]. In: Proceedings of the 6th Encontro de Energia no Meio Rural. Campinas (SP); 2006. Available from: http://www.proceedings.scielo.br/scielo.php?script=sci_arttext&pid=MSC0000000022006000200029&lng=en&nrm=iso.
  • Junqueira NTV. Espécies alternativas potenciais para produção de biodiesel [Internet]. Embrapa Cerrados. 2010. Available from: http://www.cpact.embrapa.br/eventos/2010/simposio_agroenergia/palestras/11_quarta/Manha/Nilton Junqueira/Palestra Fontes alterantivas-Pelotas agosto de 2010.pdf.
  • Satyanarayana KG, Mariano AB, Vargas JVC. A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res. 2011;35(4):291–311.
  • Lundquist T, Woertz I, Quinn N, et al. A realistic technology and engineering assessment of algae biofuel production. Berkeley (CA): Energy Biosciences Institute; 2010.
  • Demirbas A, Demirbas MF. Importance of algae oil as a source of biodiesel. Energy Convers Manag. 2011;52(1):163–170.
  • Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol. 2006;126(4):499–507.
  • Carlsson AS, van Beilen JB, Möller R, et al. Micro- and macro-algae: utility for industrial applications. UK: CPL Press, University of York; 2007.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14(1):217–232.
  • Brennan L, Owende P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14(2):557–577.
  • Petkov G, Ivanova A, Iliev I, et al. A critical look at the microalgae biodiesel. Eur J Lipid Sci Technol. 2012;114(2):103–111.
  • Vandamme D, Pontes SCV, Goiris K, et al. Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng. 2011;108(10):2320–2329.
  • Greenwell HC, Laurens LML, Shields RJ, et al. Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface. 2010;7(46):703–726.
  • Sikes K, van Walwijk M, McGill R. Algae as a feedstock for biofuels: an assessment of the state of technology and opportunities. Annex XXXIV. In: Biomass-derived diesel fuels. Japan (LEVO); Thailand USA: IEA Advanced Motor Fuels, Finland; 2011. p. 130.
  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26(3):126–131.
  • Franz A, Lehr F, Posten C, et al. Modeling microalgae cultivation productivities in different geographic locations - estimation method for idealized photobioreactors. Biotechnol J. [Internet]. 2012;7(4):546–557. Available from: http://doi.wiley.com/10.1002/biot.201000379.
  • de Mattos LFA, Bastos RG. COD and nitrogen removal from sugarcane vinasse by heterotrophic green algae Desmodesmus sp. Desalin. Water Treat. [Internet]. 2015;1–9. Available from: http://www.tandfonline.com/doi/full/10.1080/19443994.2015.1028454.
  • Xu Y, Isom L, Hanna MA. Adding value to carbon dioxide from ethanol fermentations. Bioresour Technol. 2010;101(10):3311–3319.
  • CGEE. Biocombustíveis aeronáuticos: progressos e desafios. Brasília (DF): CGEE - Centro de Gestão e Estudos Estratégicos; 2010.
  • Davis R, Aden A, Pienkos PT. Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy. [Internet]. 2011;88(10):3524–3531. Available from: http://dx.doi.org/10.1016/j.apenergy.2011.04.018.
  • Brownbridge G, Azadi P, Smallbone A, et al. The future viability of algae-derived biodiesel under economic and technical uncertainties. Bioresour Technol. [Internet]. 2014;151:166–173. Available from: http://dx.doi.org/10.1016/j.biortech.2013.10.062.
  • Sikes K, van Walwijk M, McGill R. Algae as a feedstock for biofuels: an assessment of the state of technology and opportunities. Annex XXXIV. In: Biomass-derived diesel fuels. Thailand, USA: IEA Advanced Motor Fuels, IEA Energy Technology Network, Finland, Japan (LEVO); 2011. p. 130.
  • Jank MJ, Kutas G, Amaral LF, et al. EU and U.S. policies on biofuels : potential impacts on developing countries. Washington (DC): The German Marshall Fund of the United States; 2007.
  • Lin B-F, Huang J-H, Huang D-Y. Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions. Fuel. [Internet]. 2009;88(9):1779–1785. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0016236109001689.
  • Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 2005;86:1059–1070.
  • Bamgboye AI, Hansen AC. Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. Int Agrophysics. 2008;22(1):21–29.
  • Knothe G, Gerpen J Van, Krahl J, et al. Manual do biodiesel. 1st ed. São Paulo: Edgard Blücher; 2006.
  • Knothe G. Some aspects of biodiesel oxidative stability. Fuel Process Technol. 2007;88:669–677.
  • Ramos MJ, Fernández CM, Casas A, et al. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol. 2009;100(1):261–268.
  • Zuniga ADG, Paula MM, Coimbra JSDR, et al. Revisão: propriedades físico-químicas do biodiesel. Pesticidas: revista de ecotoxicologia e meio ambiente. [Internet]. 2011;21:55–72. Available from: http://revistas.ufpr.br/pesticidas/article/view/25939.
  • ASTM International. Active standard ASTM D6751. Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. West Conshohocken (PA): ASTM International; 2015.
  • Barabás I, Todoruț I-A. Biodiesel quality, standards and properties. In: Montero G Editor. Biodiesel- quality, emissions and by-products. Shanghai China: InTech, Rijeka, Croatia; 2011. p. 3–28.
  • ANP. Dispõe sobre a especificação do biodiesel contida no Regulamento Técnico ANP no 3 de 2014 e as obrigações quanto ao controle da qualidade a serem atendidas pelos diversos agentes econômicos que comercializam o produto em todo o território nacional. Brasília (DF): Resolução ANP No 45; 2014.
  • Chevron. Diesel fuels technical review. San Ramon (CA): Chevron; 2007.
  • Berman P, Nizri S, Wiesman Z. Castor oil biodiesel and its blends as alternative fuel. Biomass Bioenerg. 2011;35(7):2861–2866.
  • Shah SN, Iha OK, Alves FCSC, et al. Potential Application of Turnip Oil (Raphanus sativus L.) for Biodiesel Production: Physical–Chemical Properties of Neat Oil, Biofuels and their Blends with Ultra-Low Sulphur Diesel (ULSD). BioEnergy Res. [Internet]. 2013;6(2):841–850. Available from: http://link.springer.com/10.1007/s12155-013-9310-y.
  • Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sustain Energy Rev. [Internet]. 2000;4(2):111–133. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1364032199000131.
  • Sarin R, Sharma M, Sinharay S, et al. Jatropha–Palm biodiesel blends: An optimum mix for Asia. Fuel. [Internet]. 2007;86(10–11):1365–1371. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0016236106004741.
  • Carvalho AL, Santana SMF, Silva CS, et al. Evaluation of the oxidative stability of biodiesel blends from soybean, tallow and castor bean using experimental mixture design. J Braz Chem Soc. [Internet]. 2013. Available from: http://www.gnresearch.org/doi/10.5935/0103-5053.20130174.
  • Yasin MH mat, Mamat R, Yusop AF, et al. Fuel physical characteristics of biodiesel blend fuels with alcohol as additives. Procedia Eng. [Internet]. 2013;53:701–706. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1877705813002105.
  • Silva LN, Cardoso CC, Pasa VMDD. Synthesis and characterization of esters from different alcohols using Macauba almond oil to substitute diesel oil and jet fuel. Fuel. [Internet]. 2016;166:453–460. Available from: http://dx.doi.org/10.1016/j.fuel.2015.10.070.
  • Nogueira LAH. Does biodiesel make sense? Energy. [Internet]. 2011;36(6):3659–3666. Available from: http://dx.doi.org/10.1016/j.energy.2010.08.035.
  • Sekar AK, Karanam S. Discerning facts about biogenic carbon efficiency. In: LCA XI international conference - instruments for green futures markets. Chicago USA: American Center for Life Cycle Assessment; 2011. p. 85–91.
  • Richard T, Chisti Y, Somerville CR, et al. The food versus fuel debate. Biofuels. 2012;3(6):635–648.
  • Wicke B. Bioenergy production on degraded and marginal land: assessing its potentials, economic performance, and environmental impacts for different settings and geographical scales [Doctorate thesis]. Netherlands: Utrecht University, Faculty of Science; 2011.
  • Thompson W, Meyer S. Second generation biofuels and food crops : Co-products or competitors ? Glob Food Sec. 2013;2(2):89–96.
  • Souza SP, Gopal AR, Seabra JE a. Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery. Energy. 2015;81:373–381.
  • Agostinho F, Ortega E. Integrated food, energy and environmental services production as an alternative for small rural properties in Brazil. Energy. [Internet]. 2012;37(1):103–114. Available from: http://dx.doi.org/10.1016/j.energy.2011.10.003.
  • Searchinger T, Heimlich R, Houghton RA, et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319(5867):1238–1240.
  • Fargione J, Hill J, Tilman D, et al. Land clearing and the biofuel carbon debt. Science (80-). 2008;319(5867):1235–1238.
  • Tilman D, Socolow R, Foley JA, et al. Beneficial biofuels—the food, energy, and environment Trilemma. Science (80-). 2009;325(5938):270–271.
  • Gibbs HK, Johnston M, Foley JA, et al. Carbon payback times for crop-based biofuel expansion in the tropics : the effects of changing yield and technology. Environ Res Lett. 2008;3:10.
  • Zheng J, Yi W, Wang N. Bio-oil production from cotton stalk. Energy Convers Manag. 2008;49(6):1724–1730.
  • Balat M, Balat M, Kı rtay E, et al. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems. Energy Convers Manag. 2009;50(12):3158–3168.
  • Balat M, Balat M, Kı rtay E, et al. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems. Energy Convers Manag. 2009;50(12):3147–3157.
  • Howell S. U.S. Biodiesel standards - an update of current activities [Internet]. Warrendale: SAE International; 1997. Available from: http://papers.sae.org/971687/.
  • Cheng JJ, Timilsina GR. Status and barriers of advanced biofuel technologies: a review. Renew Energ. 2011;36(12):3541–3549.
  • Faaij APC. Bio-energy in Europe: changing technology choices. Energy Policy. 2006;34(3):322–342.
  • Gray D, Sato S, Garcia F, et al. Amyris, Inc. Integrated Biorefinery Project Summary Final Report - Public Version [Internet]. Golden: Amyris Available from: http://www.osti.gov/servlets/purl/1122942/.
  • Lynn Yarris. Microbes produce fuels directly from biomass [Internet]. News Cent: Berkeley Lab2010. Available from: http://newscenter.lbl.gov/2010/01/27/microbes-produce-biofuels/.
  • Solazyme. How we make oil and whole algal products from microalgae [Internet]. 2015. Available from: http://www.environmental-expert.com/companies/solazyme-inc-36057.
  • MDA. Macaúba: Diretrizes e recomendações técnicas para adoçao de boas práticas de manejo para o extrativismo do fruto da macaúba/bocaiúva. Brasília (DF): Ministério do Desenvolvimento Agrário (MDA), Secretaria da Agricultura Familiar, Departamento de Geração de Renda e Agregação de Valor, Coordenação Geral de Biocombustíveis; 2014.
  • Fundação Rio Verde. Sistemas de Produção Soja e Milho Safra 2008-09 - Boletim Técnico. no 17. Lucas do Rio Verde (MT) Brazil: Fundação de Apoio à Pesquisa e Desenvolvimento Integrado Rio Verde; 2009.
  • Ramadhas A, Jayaraj S, Muraleedharan C. Biodiesel production from high FFA rubber seed oil. Fuel. [Internet]. 2005;84(4):335–340. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0016236104002844.
  • Demirbas A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manag. [Internet]. 2003;44(13):2093–2109. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0196890402002340.
  • Wu Y-P, Lin Y-F, Ye J-Y. The effect of storage condition on biodiesel [Internet]. In: Montero G, Stoytcheva M (Editors). Biodiesel-quality, emissions and by-products. InTech 2011. Available from: http://www.intechopen.com/books/biodiesel-quality-emissions-and-by-products/the-effect-of-storage-condition-on-biodiesel.
  • Quirino BF, Brasil BSAF, Laviola BG, et al. Critical analysis of feedstock availability and composition, and new potential resources for biodiesel production in Brazil [Internet]. In: Silva SS da, Chandel AK (Editors). Biofuels in Brazil-fundamental aspects, recent developments, and future perspectives. Lorena, SP, Brazil: Springer International Publishing; 2014. p. 331–350. Available from: http://link.springer.com/10.1007/978-3-319-05020-1_15.
  • Datta A, Mandal BK. A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Renew. Sustain. Energy Rev. [Internet]. 2016;57:799–821. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1364032115015531.
  • Giakoumis EG. A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renew. Energ. [Internet]. 2013;50:858–878. Available from: http://dx.doi.org/10.1016/j.renene.2012.07.040.
  • Sahoo PK, Das LM. Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils. Fuel. [Internet]. 2009;88(9):1588–1594. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0016236109000799.
  • Silva WC e, Teixeira LF, Carvalho AKF, et al. Influence of feedstock source on the biocatalyst stability and reactor performance in continuous biodiesel production. J Ind Eng Chem. [Internet]. 2014;20(3):881–886. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1226086×13002621.
  • Domingos AK, Saad EB, Wilhelm HM, et al. Optimization of the ethanolysis of Raphanus sativus (L. Var.) crude oil applying the response surface methodology. Bioresour Technol. [Internet]. 2008;99(6):1837–1845. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0960852407003574.
  • Demirbas A. Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel. [Internet]. 2008;87(8–9):1743–1748. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0016236107003730.
  • Oliveira LE, Da Silva MLCP. Comparative study of calorific value of rapeseed, soybean, jatropha curcas and crambe biodiesel [Internet]. In: International conference on renewable energies and power quality; 2013. p. 4. Available from: http://www.icrepq.com/icrepq’13/411-oliveira.pdf.
  • Shrirame HY, Panwar NL, Bamniya BR. Bio diesel from castor oil - a green energy option. Sci Res. 2011;2:1–6.
  • REN21. Renewables 2014 global status report [Internet]. Renewable Energy Policy Network for the 21st Century, Paris. Available from: http://www.ren21.net/Portals/0/documents/Resources/GSR/2014/GSR2014_full report_low res.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.