431
Views
20
CrossRef citations to date
0
Altmetric
Articles

Current research and perspectives on microalgae-derived biodiesel

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 1-18 | Received 17 Aug 2016, Accepted 08 Dec 2016, Published online: 27 Jan 2017

References

  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.
  • Gouveia L. Microalgae as a feedstock for biofuels. 1st ed. Heidelberg: Springer; 2011.
  • Norton TA, Melkonian M, Andersen RA. Algal biodiversity*. Phycologia 1996;35(4):308–326.
  • Flechtner VR. North American desert microbiotic soil crust communities. In: Algae and cyanobacteria in extreme environments. 1st ed. Dordrecht: Springer; 2007. p. 537–551.
  • Broady P. Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv. 1996;5(11):1307–1335.
  • Sharma NK, Rai AK, Singh S, et al. Airborne algae: their present status and relevance1. J Phycol. 2007;43(4):615–627.
  • Singh J, Gu S. Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev. 2010;14(9):2596–2610.
  • Henriques M, Silva A, Rocha J. Extraction and quantification of pigments from a marine microalga: a simple and reproducible method. Communicating Current Research and Educational Topics and Trends in Applied Microbiology Formatex. 2007;2:586–593.
  • John RP, Anisha G, Nampoothiri KM, et al. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource Technol. 2011;102(1):186–193.
  • Odum HT. Environment, power, and society. New York: Wiley-Interscience; 1971.
  • Brennan L, Owende P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14(2):557–577.
  • Suali E, Sarbatly R. Conversion of microalgae to biofuel. Renew Sust Energ Rev. 2012;16(6):4316–4342.
  • Demirbas A. Progress and recent trends in biodiesel fuels. Energ Convers Manage. 2009;50(1):14–34.
  • Sharma Y, Singh B. Development of biodiesel: current scenario. Renew Sust Energ Rev. 2009;13(6):1646–1651.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energ Rev. 2010;14(1):217–232.
  • Schenk PM, Thomas-Hall SR, Stephens E, et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res. 2008;1(1):20–43.
  • Khan SA, Hussain MZ, Prasad S, et al. Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev. 2009;13(9):2361–2372.
  • Jet Fuel from Microalgal Lipids [online], 2017. [online]. Available from: http://www.nrel.gov/docs/fy06osti/40352.pdf [ Accessed 17 Jan 2017].
  • Sheehan J, Camobreco V, Duffield J, et al. An overview of biodiesel and petroleum diesel life cycles. (Eds) Golden, CO (US): National Renewable Energy Lab.; 2000.
  • Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor. Biotechnology and bioengineering. 2009;102(1):100–112.
  • Veillette M, Nikiema J, Heitz M, et al. Production of biodiesel from microalgae. Rijeka: INTECH Open Access Publisher; 2012.
  • Govender T, Ramanna L, Rawat I, et al. BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresource Technol. 2012;114:507–511.
  • Münkel R, Schmid‐Staiger U, Werner A, et al. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Biotechnol Bioeng. 2013;110(11):2882–2893.
  • Pires J, Alvim-Ferraz M, Martins F, et al. Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev. 2012;16(5):3043–3053.
  • Harun R, Singh M, Forde GM, et al. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev. 2010;14(3):1037–1047.
  • Posten C. Design principles of photo‐bioreactors for cultivation of microalgae. Eng Life Sci. 2009;9(3):165–177.
  • Stewart C, Hessami M-A. A study of methods of carbon dioxide capture and sequestration—-the sustainability of a photosynthetic bioreactor approach. Energ Convers Manage. 2005;46(3):403–420.
  • Janssen M, Tramper J, Mur LR, et al. Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale‐up, and future prospects. Biotechnol Bioeng. 2003;81(2):193–210.
  • Issarapayup K, Powtongsook S, Pavasant P. Flat panel airlift photobioreactors for cultivation of vegetative cells of microalga Haematococcus pluvialis. J Biotechnol. 2009;142(3):227–232.
  • Leupold M, Hindersin S, Kerner M, et al. The effect of discontinuous airlift mixing in outdoor flat panel photobioreactors on growth of Scenedesmus obliquus. Bioprocess Biosystems Eng. 2013;36(11):1653–1663.
  • Reyna-Velarde R, Cristiani-Urbina E, Hernández-Melchor DJ, et al. Hydrodynamic and mass transfer characterization of a flat-panel airlift photobioreactor with high light path. Chem Eng Processing: Process Intensification. 2010;49(1):97–103.
  • Olivieri G, Marzocchella A, Salatino P. Hydrodynamics and mass transfer in a lab-scale three-phase internal loop airlift. Chem Eng J. 2003;96(1):45–54.
  • Olivieri G, Marzocchella A, Van Ommen J, et al. Local and global hydrodynamics in a two-phase internal loop airlift. Chem Eng Sci. 2007;62(24):7068–7077.
  • Bergmann P, Ripplinger P, Beyer L, et al. Disposable flat panel airlift photobioreactors. Chem Ing Tech. 2013;85(1‐2):202–205.
  • Degen J, Uebele A, Retze A, et al. A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol. 2001;92(2):89–94.
  • Meiser A, Schmid-Staiger U, Trösch W. Optimization of eicosapentaenoic acid production byPhaeodactylum tricornutumin the flat panel airlift (FPA) reactor. J Appl Phycol. 2004;16(3):215–225.
  • Loubière K, Olivo E, Bougaran G, et al. A new photobioreactor for continuous microalgal production in hatcheries based on external‐loop airlift and swirling flow. Biotechnol Bioeng. 2009:102(1):132–147.
  • Loubiere K, Pruvost J, Aloui F, et al. Investigations in an external-loop airlift photobioreactor with annular light chambers and swirling flow. Chem Eng Res Des. 2011;89(2):164–171.
  • Olivieri G, Salatino P, Marzocchella A. Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J Chem Technol Biotechnol. 2014;89(2):178–195.
  • Ugwu C, Ogbonna J, Tanaka H. Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol. 2002;58(5):600–607.
  • Berberoglu H, Yin J, Pilon L. Light transfer in bubble sparged photobioreactors for H 2 production and CO 2 mitigation. Int J Hydrogen Energy. 2007;32(13):2273–2285.
  • Sastre RR, Csögör Z, Perner-Nochta I, et al. Scale-down of microalgae cultivations in tubular photo-bioreactors—a conceptual approach. J Biotechnol. 2007;132(2):127–133.
  • Pruvost J, Pottier L, Legrand J. Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor. Chem Eng Sci. 2006;61(14):4476–4489.
  • Yu G, Li Y, Shen G, et al. A novel method using CFD to optimize the inner structure parameters of flat photobioreactors. J Appl Phycol. 2009;21(6):719–727.
  • Su Z, Kang R, Shi S, et al. Study on the destabilization mixing in the flat plate photobioreactor by means of CFD. Biomass Bioenerg. 2010;34(12):1879–1884.
  • Luo H-P, Al-Dahhan MH. Verification and validation of CFD simulations for local flow dynamics in a draft tube airlift bioreactor. Chem Eng Sci. 2011;66(5):907–923.
  • Perner I, Posten C, Broneske J. CFD optimization of a plate photobioreactor used for cultivation of microalgae. Eng Life Sci. 2003;3(7):287–291.
  • Hadiyanto H, Elmore S, Van Gerven T, et al. Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chem Eng J. 2013;217:231–239.
  • Wongluang P, Chisti Y, Srinophakun T. Optimal hydrodynamic design of tubular photobioreactors. J Chem Technol Biotechnol. 2013;88(1):55–61.
  • Ren L-J, Ji X-J, Huang H, et al. Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl Microbiol Biot. 2010;87(5):1649–1656.
  • Lee E, Pruvost J, He X, et al. Design tool and guidelines for outdoor photobioreactors. Chem Eng Sci. 2014;106:18–29.
  • Perez-Garcia O, Escalante FM, de-Bashan LE, et al. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 2011;45(1):11–36.
  • Wu Z, Shi X. Optimization for high‐density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol. 2007;44(1):13–18.
  • Chojnacka K, Noworyta A. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Tech. 2004;34(5):461–465.
  • Wang B, Li Y, Wu N, et al. CO2 bio-mitigation using microalgae. Appl Microbiol Biot. 2008;79(5):707–718.
  • Bilanovic D, Andargatchew A, Kroeger T, et al. Freshwater and marine microalgae sequestering of CO 2 at different C and N concentrations–response surface methodology analysis. Energ Convers Manage. 2009;50(2):262–267.
  • Li Y, Horsman M, Wu N, et al. Biofuels from microalgae. Biotechnol Progr. 2008;24(4):815–820.
  • Munoz R, Guieysse B. Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 2006;40(15):2799–2815.
  • Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013;31(4):233–239.
  • Kim J, Yoo G, Lee H, et al. Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv. 2013;31(6):862–876.
  • Rashid N, Rehman MSU, Sadiq M, et al. Current status, issues and developments in microalgae derived biodiesel production. Renew Sustain Energ Rev. 2014;40:760–778.
  • Brink J, Marx S. Harvesting of Hartbeespoort Dam micro-algal biomass through sand filtration and solar drying. Fuel. 2013;106:67–71.
  • Topare NS, Raut SJ, Renge V, et al. Extraction of oil from algae by solvent extraction and oil expeller method. Int J Chem Sci. 2011;9(4):1746–1750.
  • Adam F, Abert-Vian M, Peltier G, et al. “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresour Technol. 2012;114:457–465.
  • Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol Adv. 2012;30(3):709–732.
  • Medina AR, Grima EM, Giménez AG, et al. Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv. 1998;16(3):517–580.
  • Taylor L. Supercritical fluid extraction. New York: John Wileys & Sons. (Eds) Inc; 1996.
  • Thana P, Machmudah S, Goto M, et al. Response surface methodology to supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis. Bioresour Technol. 2008;99(8):3110–3115.
  • Kumar M, Sharma M. Production methodology of biodiesel from microalgae. Int J Appl Eng Res. 2013;8(15):1825–1832.
  • Huang G, Chen F, Wei D, et al. Biodiesel production by microalgal biotechnology. Appl Energ. 2010;87(1):38–46.
  • Johnson MB, Wen Z. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energ Fuel. 2009;23(10):5179–5183.
  • Lam MK, Lee KT. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv. 2012;30(3):673–690.
  • Wahlen BD, Willis RM, Seefeldt LC. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol. 2011;102(3):2724–2730.
  • Liu B, Zhao ZK. Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol. 2007;82(8):775–780.
  • Park J-Y, Park MS, Lee Y-C, et al. Advances in direct transesterification of algal oils from wet biomass. Bioresour Technol. 2015;184:267–275.
  • Ehimen E, Sun Z, Carrington C. Variables affecting the in situ transesterification of microalgae lipids. Fuel 2010;89(3):677–684.
  • Velasquez-Orta S, Lee J, Harvey A. Evaluation of FAME production from wet marine and freshwater microalgae by in situ transesterification. Biochem Eng J. 2013;76:83–89.
  • Zakaria R, Harvey AP. Direct production of biodiesel from rapeseed by reactive extraction/in situ transesterification. Fuel Process Technol. 2012;102:53–60.
  • Patil PD, Gude VG, Mannarswamy A, et al. Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel 2012;97:822–831.
  • Zhang X, Yan S, Tyagi RD, et al. Ultrasonication aided in-situ transesterification of microbial lipids to biodiesel. Bioresour Technol. 2014;169:175–180.
  • Georgogianni K, Kontominas M, Avlonitis D, et al. Transesterification of sunflower seed oil for the production of biodiesel: effect of catalyst concentration and ultrasonication. WSEAS Transactions on Environment and Development. 2006;2(2):136–140.
  • Macías-Sánchez M, Robles-Medina A, Hita-Peña E, et al. Biodiesel production from wet microalgal biomass by direct transesterification. Fuel. 2015;150:14–20.
  • Marchetti J, Miguel V, Errazu A. Possible methods for biodiesel production. Renew Sust Energ Rev. 2007;11(6):1300–1311.
  • Cheirsilp B, Louhasakul Y. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresour Technol. 2013;142:329–337.
  • El-Enin SA, Attia N, El-Ibiari N, et al. In-situ transesterification of rapeseed and cost indicators for biodiesel production. Renew Sust Energ Rev. 2013;18:471–477.
  • Velasquez-Orta S, Lee J, Harvey A. Alkaline in situ transesterification of Chlorella vulgaris. Fuel 2012;94:544–550.
  • Sangaletti-Gerhard N, Cea M, Risco V, et al. In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts. Bioresour Technol. 2015;179:63–70.
  • Zhang Y, Li Y, Zhang X, et al. Biodiesel production by direct transesterification of microalgal biomass with co-solvent. Bioresour Technol. 2015;196:712–715.
  • Galadima A, Muraza O. Biodiesel production from algae by using heterogeneous catalysts: A critical review. Energy 2014;78:72–83.
  • Kim B, Im H, Lee JW. In situ transesterification of highly wet microalgae using hydrochloric acid. Bioresour Technol. 2015;185:421–425.
  • Viêgas CV, Hachemi I, Freitas SP, et al. A route to produce renewable diesel from algae: Synthesis and characterization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel. Fuel 2015;155:144–154.
  • Endalew AK, Kiros Y, Zanzi R. Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenerg. 2011;35(9):3787–3809.
  • Kim H-J, Kang B-S, Kim M-J, et al. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal Today. 2004;93:315–320.
  • Chen C-L, Huang C-C, Ho K-C, et al. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes. Bioresour Technol. 2015;194:179–186.
  • Guldhe A, Singh B, Rawat I, et al. Synthesis of biodiesel from Scenedesmus sp. by microwave and ultrasound assisted in situ transesterification using tungstated zirconia as a solid acid catalyst. Chem Eng Res Des. 2014;92(8):1503–1511.
  • Sivaramakrishnan R, Muthukumar K. Direct transesterification of Oedogonium sp. oil be using immobilized isolated novel Bacillus sp. lipase. J Biosci Bioeng. 2014;117(1):86–91.
  • Ghaly A, Dave D, Brooks M, et al. Production of biodiesel by enzymatic transesterification: review. Am J Biochem Biotechnol. 2010;6(2):54–76.
  • Tran D-T, Yeh K-L, Chen C-L, et al. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresour Technol. 2012;108:119–127.
  • Gunawan F, Kurniawan A, Gunawan I, et al. Synthesis of biodiesel from vegetable oils wastewater sludge by in-situ subcritical methanol transesterification: Process evaluation and optimization. Biomass Bioenerg. 2014;69:28–38.
  • Jazzar S, Quesada-Medina J, Olivares-Carrillo P, et al. A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae. Bioresour Technol. 2015;190:281–288.
  • Skorupskaite V, Makareviciene V, Gumbyte M. Opportunities for simultaneous oil extraction and transesterification during biodiesel fuel production from microalgae: A review. Fuel Process Technol. 2016;150:78–87.
  • Abdulkadir BA, Danbature W, Yirankinyuki FY, et al. In situ transesterification of rubber seeds (Hevea brasiliensis). Greener J Phy Sci. 2014;4(3):038–044.
  • Nautiyal P, Subramanian K, Dastidar M. Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction–transesterification process. Fuel 2014;135:228–234.
  • Qian J, Yang Q, Sun F, et al. Cogeneration of biodiesel and nontoxic rapeseed meal from rapeseed through in-situ alkaline transesterification. Bioresour Technol. 2013;128:8–13.
  • El-Shimi H, Attia NK, El-Sheltawy S, et al. Biodiesel production from Spirulina-platensis microalgae by in-situ transesterification process. J Sust Bioenerg Syst. 2013;3(03):224.
  • Mondala A, Liang K, Toghiani H, et al. Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour Technol. 2009;100(3):1203–1210.
  • Mandalam RK, Palsson B. Elemental balancing of biomass and medium composition enhances growth capacity in high density Chlorella vulgaris cultures. Biotechnol Bioeng. 1998;59(5):605–611.
  • Suh IS, Lee C-G. Photobioreactor engineering: design and performance. Biotechnol Bioproc E. 2003;8(6):313–321.
  • Lee C-G. Calculation of light penetration depth in photobioreactors. Biotechnol Bioproc E. 1999;4(1):78–81.
  • Melis A, Neidhardt J, Baroli I, et al. Maximizing photosynthetic productivity and light utilization in microalgae by minimizing the light-harvesting chlorophyll antenna size of the photosystems. In: BioHydrogen. 1st ed. New York: Springer; 1998. p. 41–52.
  • Molina E, Fernández J, Acién F, et al. Tubular photobioreactor design for algal cultures. J Biotechnol. 2001;92(2):113–131.
  • Qiang H, Richmond A. Optimizing the population density inIsochrysis galbana grown outdoors in a glass column photobioreactor. J Appl Phycol. 1994;6(4):391–396.
  • Ugwu C, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresource Technol. 2008;99(10):4021–4028.
  • Fon Sing M. Strain selection and outdoor cultivation of halophilic microalgae with potential for large-scale biodiesel production. (Eds) Murdoch University; Perth, 2010.
  • Aidar E, Gianesella-Galvão S, Sigaud T, et al. Effects of light quality on growth, biochemical composition and photo synthetic production in Cyclotella caspia Grunow and Tetraselmis gracilis (Kylin) Butcher. J Exp Mar Biol Ecol. 1994;180(2):175–187.
  • Thompson PA, Guo Mx, Harrison PJ. Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton1. J Phycol. 1992;28(4):481–488.
  • Grobbelaar JU. Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. J Appl Phycol. 2009;21(5):489–492.
  • Davison IR. Environmental effects on algal photosynthesis: temperature. J Phycol. 1991;27(1):2–8.
  • Marre E. Temperature In: Lewin RA, editor. Physiology and biochemistry of algae. (Eds) New York: Academic Press; 1962.
  • Kirst G. Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Biol. 1990;41(1):21–53.
  • Fogg G. Algal adaptation to stress—some general remarks. In: Algal Adaptation to Environmental Stresses. 1st ed. Berlin: Springer; 2001. p. 1–19.
  • Andersen RA. Algal culturing techniques. 1st ed. Burlington (MA): Elsevier/Academic Press; 2005.
  • Meseck SL. Controlling the growth of a cyanobacterial contaminant, Synechoccus sp., in a culture of Tetraselmis chui (PLY429) by varying pH: Implications for outdoor aquaculture production. Aquaculture. 2007;273(4):566–572.
  • Goldman JC, Azov Y, Riley CB, et al. The effect of pH in intensive microalgal cultures. I. Biomass regulation. J Exp Mar Biol Ecol. 1982;57(1):1–13.
  • Goldman JC, Riley CB, Dennett MR. The effect of pH in intensive microalgal cultures. II. Species competition. JExp Mar Biol Ecol. 1982;57(1):15–24.
  • Hansen PJ. Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquat Microb Ecol. 2002;28(3):279–288.
  • Richmond A. Handbook of microalgal culture: biotechnology and applied phycology. Iowa: John Wiley & Sons; 2008.
  • Kieran PM, Malone DM, MacLoughlin PF. Effects of hydrodynamic and interfacial forces on plant cell suspension systems. In: Influence of stress on cell growth and product formation. 1st ed. Berlin: Springer; 2000. p. 139–177.
  • Thomas WH, Gibson CH. Effects of small-scale turbulence on microalgae. J Appl Phycol. 1990;2(1):71–77.
  • Harris D. Growth inhibitors produced by the green algae (Volvocaceae). Archiv für Mikrobiologie. 1970;76(1):47–50.
  • Mirón AS, Garcı a MCC, Gómez AC, et al. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J. 2003;16(3):287–297.
  • Eppink M, Barbosa M, Wijffels R. Biorefining of microalgae: Production of highvalue products, bulk chemicals and biofuels. In: Microalgal Biotechnology: Integration and Economy. 1st ed. Berlin: De Gruyter; 2012. p. 319.
  • Almeida JR, Fávaro LC, Quirino BF. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels. 2012;5(1):1.
  • Kumar P, Mehariya S, Ray S, et al. Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol. 2015;55(1):1–7.
  • Green B, Durnford D. The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Biol. 1996;47(1):685–714.
  • LaRoche J, Mortain-Bertrand A, Falkowski PG. Light intensity-induced changes in cab mRNA and light harvesting complex II apoprotein levels in the unicellular chlorophyte Dunaliella tertiolecta. Plant Physiol. 1991;97(1):147–153.
  • Holt NE, Fleming GR, Niyogi KK. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 2004;43(26):8281–8289.
  • Naus J, Melis A. Changes of photosystem stoichiometry during cell growth in Dunaliella salina cultures. Plant Cell Physiol. 1991;32(4):569–575.
  • Beckmann J, Lehr F, Finazzi G, et al. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol. 2009;142(1):70–77.
  • Kim JH, Nemson JA, Melis A. Photosystem II reaction center damage and repair in Dunaliella salina (green alga)(analysis under physiological and irradiance-stress conditions). Plant Physiol. 1993;103(1):181–189.
  • Michel H, Tellenbach M, Boschetti A. A chlorophyll b-less mutant of Chlamydomonas reinhardii lacking in the light-harvesting chlorophyll ab-protein complex but not in its apoproteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1983;725(3):417–424.
  • Raines CA. The Calvin cycle revisited. Photosynth Res. 2003;75(1):1–10.
  • Lee YK, Low CS. Productivity of outdoor algal cultures in enclosed tubular photobioreactor. Biotechnol Bioeng. 1992;40(9):1119–1122.
  • Post A, Dubinsky Z, Wyman K, et al. Kinetics of light-intensity adaptation in a marine planktonic diatom. Mar Biol. 1984;83(3):231–238.
  • Pirt SJ, Lee YK, Walach MR, et al. A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J Chem Technol Biot. Biot. 1983;33(1):35–58.
  • Qiang H, Richmond A. Productivity and photosynthetic efficiency ofSpirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J Appl Phycol. 1996;8(2):139–145.
  • LEE Y-K, PIRT SJ. Energetics of photosynthetic algal growth: influence of intermittent illumination in short (40 s) cycles. Microbiology 1981;124(1):43–52.
  • Vejrazka C, Janssen M, Streefland M, et al. Photosynthetic efficiency of Chlamydomonas reinhardtii in attenuated, flashing light. Biotechnol Bioeng. 2012;109(10):2567–2574.
  • Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant J. 2008;54(4):621–639.
  • Kropat J, Tottey S, Birkenbihl RP, et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. P Nat Acad Sci USA. 2005;102(51):18730–18735.
  • Molnar A, Bassett A, Thuenemann E, et al. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. The Plant J. 2009;58(1):165–174.
  • Durrett TP, Benning C, Ohlrogge J. Plant triacylglycerols as feedstocks for the production of biofuels. The Plant J. 2008;54(4):593–607.
  • Renaud SM, Thinh L-V, Lambrinidis G, et al. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture. 2002;211(1):195–214.
  • Liu X, Sheng J, Curtiss III R. Fatty acid production in genetically modified cyanobacteria. P Nat Acad Sci. 2011;108(17):6899–6904.
  • Scragg A, Illman A, Carden A, et al. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy. 2002;23(1):67–73.
  • De Morais MG, Costa JAV. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol. 2007;129(3):439–445.
  • Yoo C, Jun S-Y, Lee J-Y, et al. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol. 2010;101(1):S71–S74.
  • Negoro M, Shioji N, Miyamoto K, et al. Growth of microalgae in high CO2 gas and effects of SOx and NOx. Appl Biochem Biotechnol. 1991;28(1):877–886.
  • Chiu S-Y, Kao C-Y, Huang T-T, et al. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour Technol. 2011;102(19):9135–9142.
  • Kurano N, Ikemoto H, Miyashita H, et al. Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energ Convers Manage. 1995;36(6):689–692.
  • Murakami M, Ikenouchi M. The biological CO2 fixation and utilization project by rite (2)—Screening and breeding of microalgae with high capability in fixing CO2—Energ Convers Manage. 1997;38:S493–S497.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.