984
Views
36
CrossRef citations to date
0
Altmetric
Articles

A review of design, operational conditions and applications of microbial fuel cells

&
Pages 203-220 | Received 18 Mar 2016, Accepted 14 Nov 2016, Published online: 05 Apr 2017

References

  • Bond DR, Holmes DE, Tender LM, et al. Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 2002;295:483–485.
  • Davis F, Higson SPJ. Biofuel cells—recent advances and applications. Biosens Bioelectron. 2007;22:1224–1235.
  • Kim HJ, Park HS, Hyun MS, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewenella putrefaciens. Enzyme Microb Technol. 2002;30:145–152.
  • Lovely DR. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotech. 2006;17:327–332.
  • Gray KA, Zhao L, Emptage M. Bioethanol. Curr Opin. Chem Biol. 2006;10:141–146.
  • Rittmann BE. Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng. 2008;100:203–212.
  • Lee HS, Salerno MB, Rittmann BE. Thermodynamic evaluation on H2 production in glucose fermentation. Environ Sci Technol. 2008;42:2401–2407.
  • Potter MC. Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Ser B. 1912;84:260–276.
  • Potter MC. On the difference of potential due to the vital activity of microorganisms. Proc Univ Durham Phil Soc. 1910;3:245–249.
  • Potter, MC. Electrical effects accompanying the decomposition of organic compunds. Proc R Soc Lond B 1911;84:260–276.
  • Cohen B. The bacterial culture as an electrical half-cell. J Bacteriol. 1931;21:18–19.
  • DelDuca MG, Friscoe JM, Zurilla RW. Developments in industrial microbiology. AIBS. 1963;4:81–84.
  • Karube IT. Matasunga S, Suzuki, et al. Continuous hydrogen production by immobilized whole cels of Clostridium butyricum. Biochim Biophys Acta. 1976;24(2):338–343.
  • Karube, I, Matsunaga T, Shinya T, et al. Biochemical cells utilizing immobilized cells of Clostridium butyricum. Biotechnol Bioeng. 1977;19(11):1727–1733.
  • Allen RM, Bennetto HP. Microbial fuel-cells: electricity production from carbohydrates. Appl Biochem Biotechnol. 1993;39/40:27–40.
  • Kim BH, Kim HJ, Hyun MS, et al. Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrifaciens. J Microbiol Biotechnol. 1999a;9:127–131.
  • Khera J. Chandra, A. Microbial fuel cells: recent trends. Proc Natl Acad Sci Sect A Phys Sci. 2012;82(1):31–41.
  • Koók L, Rózsenberszki T, Nemestóthy N, et al. Bioelectrochemical treatment of municipal waste liquor in microbial fuel cells for energy valorization. J Clean Prod. 2016;112(5):4406–4412.
  • Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006;14(12):512–518.
  • Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology Advances. 2007;25:464–482.
  • Oh SE, Logan BE. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res.2005;39:4673–4682.
  • Park DH, Zeikus JG. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microb. 2000;66:1292–1297.
  • Choi Y, Jung E, Kim S, et al. Membrane fluidity sensoring microbial fuel cell. Bioelectrochemistry. 2003;59:121–127.
  • Gil, GC, Chang IS, Kim BH, et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron. 2003;18(4):327–334.
  • Moon H, Chang IS, Kim BH. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresour Technol. 2006;97:621–627.
  • Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005;23:291–298.
  • Watanabe K. Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng. 2008;106(6):528–536.
  • Jang JK, Pham TH, Chang IS et al. Construction and operation of a novel mediator-and membraneless microbial fuel cell. Process Biochem. 2004;39(8):1007–1012.
  • Liu H, Cheng S, Logan BE. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol. 2005a;39(2):658–662.
  • Logan BE, Hamelers B, Rozendal R et al. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006;40:5181–5192.
  • Oh S, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol. 2004;38(18):4900–4904.
  • You S J, Zhao QL, Zhang JN, et al. A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources. 2006;162(2):1409–1415.
  • Jung S, Regan JM. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol. 2007;77(2):393–402.
  • Kim BH, Park HS, Kim HJ et al. Enrichment of microbial community generating electricity using a fuel-cell type electrochemical cell. Appl Microbiol Biotechnol. 2004;63:672–681.
  • Kim GT, Webster G, Wimpenny JWT, et al. Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol. 2006;101(3):698–710.
  • Kim JR, Cheng S, Oh SE, et al. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol. 2007;41:1004–1009.
  • Logan BE, Murano C, Scott K, et al. Electricity generation from cysteine in a microbial fuel cell. Water Res. 2005;39(5):942–952.
  • Mohan Y, Manoj S, Kumar M, et al. Electricity generation using microbial fuel cells. Int J Hydrogen Energy. 2008;33:423–426.
  • Nandy A, Kumar V, Kundu PP. Effect of electric impulse for improved energy generation in mediatorless dual chamber microbial fuel cell through electroevolution of Escherichia coli. Biosens Bioelectron. 2016;79:796–801.
  • Chang IS, Jang JK, Gil GC et al. Continuous determination of biochemical oxygen demand using microbial fuelcell type biosensor. Biosens Bioelectron. 2004;19:607–163.
  • Kim BH, Chang IS, Gil GC, et al. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett. 2003;25:541–545.
  • Yang W, Wei X, Fraiwan A, et al. Fast and sensitive water quality assessment: a μL-scale microbial fuel cell-based biosensor integrated with an air-bubble trap and electrochemical sensing functionality. Sens Actuators B Chem. 2016;226:191–195.
  • Abbasi U, Jin W, Pervez A, et al. Anaerobic microbial fuel cell treating combined industrial wastewater: correlation of electricity generation with pollutants. Bioresour Technol. 2016;200:1–7.
  • Rabaey K, Van De Sompel K, Maignien L, et al. Microbial fuel cells for sulfide removal. Environ Sci Technol. 2006;40:5218–5224.
  • Gupta P, Parkhey P, Joshi K, et al. Design of a microbial fuel cell and its transition to microbial electrolytic cell for hydrogen production by electrohydrogenesis. Indian J Exp Biol. 2013;51:860–865.
  • Holzman DC. Microbe power. Environ Health Persp. 2005;113:A754–A757.
  • Shen R, Liu Z, He Y, et al. Microbial electrolysis cell to treat hydrothermal liquefied wastewater from cornstalk and recover hydrogen: degradation of organic compounds and characterization of microbial community. Int J Hydrogen Energy. 2016. doi:10.1016/j.ijhydene.2016.01.032 ( Epub ahead of print).
  • Niessen J, Harnisch F, Rosenbaum M, et al. Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun. 2006;8:869–1873.
  • Zhang E, Xu W, Diao G, et al. Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells. J Power Sources. 2006;161:820–825.
  • Lovley DR, Holmes DE, Nevin KP. Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol. 2004;49:219–286.
  • Vargas M, Kashefi K, Blunt-Harris EL, et al. Microbiological evidence for Fe(III) reduction on early earth. Nature. 1998;395:65–70.
  • Holmes DE, Bond DR, O'Neil RA, et al. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecol. 2004;48:178–190.
  • Oh SE, Logan BE. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol. 2006;70:162–169.
  • Park HS, Kim BH, Kim HS, et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a from a microbial fuel cell. Anaerobe. 2001;7(6):297–306.
  • Park DH, Zeikus JG. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnol. 2002;59:58–61.
  • Park DH, Laivenieks M, Guettler MV, et al. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol. 1999;65:2912–2917.
  • Park DH, Zeikus JG. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol. 1999;181:2403–2410.
  • Pham CA, Jung SJ, Phung NT, et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett. 2003;223:129–134.
  • Rabaey K, Boon N, Siciliano SD, et al. Biofuel cells select for microbial consortia that self-mediate electrontransfer. Appl Environ Microb. 2004;70:5373–5382.
  • Niessen J, Schroder U, Scholz F. Exploiting complex carbohydrates for microbial electricity generation — a bacterial fuel cell operating on starch. Electrochem Commun. 2004b;6:955–958.
  • Ieropoulos IA, Greenman J, Melhuish C, et al. Comparative study of three types of microbial fuel cell. Enzyme Microb Tech. 2005a;37:238–245.
  • Park DH, Kim BH, Moore B, et al. Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds. Biotechnol Tech. 1997;11:145–158.
  • Vega CA, Fernandez I. Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis and Erwinia dissolvens. Bioelectrochem Bioenerg. 1987;17:217–222.
  • Grzebyk M, Pozniak G. Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Sep Purif Technol. 2005;41:321–328.
  • Habermann W, Pommer EH. Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol. 1991;35:128–133.
  • Schroder U, Nieben J, Scholz F. A generation of microbial fuel cells with current outputs boosted by more than on e order of magnitude. Angew Chem Int Ed. 2003;42:2880–2883.
  • Xi MY, Sun YP. Preliminary study on E. coli microbial fuel cell and on-electrode taming of the biocatalyst. Chinese J Process Eng. 2008;8(6):1179–1184.
  • Min B, Cheng S, Logan BE. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 2005a;39:1675–1686.
  • Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol. 2003;69:1548–1555.
  • Reguera G, Nevin KP, Nicoll JS, et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 2006;72:7345–7348.
  • Lee SA, Choi Y, Jung S, et al. Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochemistry. 2002;57:173–178.
  • Bond DR, Lovley DR. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol. 2005;71(4):2186–2189.
  • Menicucci J, Beyenal H, Marsili E, et al. Procedure for determining maximum sustainable power generated by microbial fuel cells. Environ Sci Technol. 2006;40(3):1062–1068.
  • Rhoads A, Beyenal H, Lewandowshi Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol. 2005;39:4666–4671.
  • Thurston CF, Bennetto HP, Delaney GM, et al. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to Coulombic yields. J Gen Microbiol. 1985;131:1393–1401.
  • Rabaey K, Boon N, Hofte M, et al. Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol. 2005a;39:3401–3408.
  • Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol. 2003;21:1229–1232.
  • Liu ZD, Lian J, Du ZW, et al. Construction of sugar-based microbial fuel cells by dissimilatory metal reduction bacteria. Chin J Biotech. 2006;21:131–137.
  • Ringeisen BR, Henderson E, Wu PK, et al. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol. 2006;40:2629–2634.
  • Biffinger JC, Byrd JN, Dudley BL, et al. Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens Bioelectron. 2008;23:820–826.
  • Kim HJ, Hyun MS, Chang IS, et al. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol. 1999b;9:365–367.
  • Caccavo F Jr, Lonergan DJ, Lovley DR, et al. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol. 1994;60(10):3752–3759.
  • Zou YJ, Xiang C, Yang L, et al. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int J Hydrogen Energy. 2008;33:4856–4862.
  • Logan BE. Microbial fuel cell. 1st ed. Hoboken: John Wiley & Sons, Inc.; 2007.
  • Park DH, Zeikus JG. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng. 2003;81:348–355.
  • Rabaey I, Ossieur W, Verhaege M, et al. Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci Technol. 2005b;52(1-2):515–523.
  • Hernández-Fernández FJ, Pérez de los Ríos A, Mateo-Ramírez F, et al. New application of polymer inclusion membrane based on ionic liquids as proton exchange membrane in microbial fuel cell. Sep Purif Technol. 2016;160:51–58.
  • Min B, Logan BE. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol. 2004;38:5809–5814.
  • Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol. 2004;38(14):4040–4046.
  • Cheng S, Liu H, Logan BE. Increased performance of single-chambermicrobial fuel cells using an improved cathode structure. Electrochem Commun. 2006a;8:489–494.
  • Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol. 2004;28:2281–2285.
  • Tartakovsky B, Guiot SR. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors. Biotechnol Prog. 2006;22:241–246.
  • Moon H, Chang IS, Jang JK, et al. Residence time distribution in microbial fuel cell and its influence on COD removal wit helectricity generation. Biochem Eng J. 2005;27:59–65.
  • He Z, Minteer SD, Angenent L. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol. 2005;39:5262–5267.
  • Aelterman P, Rabaey K, Pham HT, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol. 2006;40:3388–3394.
  • Liu Z, Liu J, Zhang S, et al. Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates. Biochem Eng J. 2009;45:185–191.
  • Pant D, Bogaert GV, Diels L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol. 2010;101:1533–1543.
  • Chae K-J, Choi, MJ, Lee JW, et al. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol. 2009;100:3518–3525.
  • Aelterman P. Microbial fuel cells for the treatment of waste streams with energy recovery. Ph.D. Thesis, Belgium: Gent University; 2009.
  • Biffinger JC, Pietron J, Bretschger O, et al. The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosens Bioelectron. 2008;24:900–905.
  • Catal T, Li K, Bermek H, et al. Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources. 2008a;175:196–200.
  • Rezaei F, Xing D, Wagner R, et al. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol. 2009b;75(11):3673–3678.
  • Venkata Mohan S, Mohanakrishn, G, Reddy BP, et al. Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem Eng J. 2008a;39:121–130.
  • Venkata Mohan S, Saravanan R, Veer Raghavulu S, et al. Sarma, PN, Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Bioresour Technol. 2008b;99:596–603.
  • Feng Y, Wang X, Logan BE, et al. Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol. 2008;78:873–880.
  • Lu N, Zhou SG, Zhuang L, et al. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J. 2009;43:246–251.
  • Zhang JN, Zhao QL, You SJ, et al. Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell. Water Sci Technol. 2008;57(7):1017–1021.
  • Rezaei F, Richard TL, Logan BE. Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid-substrate microbial fuel cells. J Power Sources. 2009a;192:304–309.
  • Ren Z, Steinburg LM, Regan JM. Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol. 2008;58(3):617–622.
  • Liu H, Cheng S, Logan BE. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol. 2005b;39:5488–5493.
  • Pham TH, Jang JK, Chang IS, et al. Improvement of cathode reaction of a mediatorless microbial fuel cell. J Microbiol Biotechnol. 2004;14:324–329.
  • Zhao F, Harnisch F, Schroder U, et al. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun. 2005;7:1405–1410.
  • Zhao F, Harnisch F, Schroder U, et al. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol. 2006:5193–5199.
  • Cheng S, Liu H, Logan BE. Power densities using different cathode catalyst (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol. 2006b;40:364–369.
  • Behera M, Ghangrekar MM. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed Ph. Bioresour Technol. 2009;100:5114–5121.
  • Erable B, Etcheverry L, Bergel A. Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment. Electrochem Commun. 2009;11:619–622.
  • He Z, Huang Y, Manohar AK, et al. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry. 2008;74:78–82.
  • Jadhav GS, Ghangrekar MM. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol. 2009;100:717–723.
  • Puig S, Serra M, Coma M, et al. Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresour Technol. 2010;101:9594–9599.
  • Raghavulu SV, Mohan SV, Goud RK, et al. Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochem Commun. 2009;11:371–375.
  • Winfield J, Ieropoulos I, Greenman J, et al. The overshoot phenomenon as a function of internal resistance in microbial fuel cells. Bioelectrochemistry. 2011;81:22–27.
  • Zhuang L, Zhou S, Li Y, et al. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresour Technol. 2010;101:3514–3519.
  • Jung S, Mench MM, Regan JM. Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH. Environ Sci Technol. 2011;45:9069–9074.
  • Patil SA, Harnisch F, Koch C, et al. Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. Bioresour Technol. 2011;102:6887–6891.
  • Yuan Y, Zhao B, Zhou S, et al. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. Bioresour Technol. 2011;102:6887–6891.
  • Zhang L, Li C, Ding L, et al. Influences of initial pH on performance and anodic microbes of fed-batch microbial fuel cells. J Chem Technol Biotechnol. 2011;86:1226–1232.
  • Nimje VR, Chen CY, Chen CC, et al. Microbial fuel cell of Enterobacter cloacae: effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses. Int J Hydrogen Energy. 2011;36:11093–11101.
  • Cheng KY, Ho G, Ruwisch RC. Anodophilic biofilm catalyzes cathodic oxygen reduction, Environ. Sci Technol. 2010;44:518–525.
  • Puig SV, Mohan SV, Reddy MV, et al. Behaviour of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. Int J Hydrogen Energy. 2009;34:7547–7554.
  • Martin E, Savadogo O, Guiot SR, et al. The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge. Biochem Eng J. 2010;51:132–139.
  • Fan Y, Hu HQ, Liu H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol. 2007;41:8154–8158.
  • Fornero JJ, Rosenbaum M, Cotta MA, et al. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity. Environ Sci Technol. 2010;44:2728–2734.
  • Min B, Román OB, Angelidaki I. Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnol Lett. 2008;30:1213–1218.
  • Nam JY, Kim HW, Lim KH, et al. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells. Biosens Bioelectron. 2010;25:1155–1159.
  • Qiang L, Yuan LJ, Ding Q. Influence of buffer solutions on the performance of microbial fuel cell electricity generation. Huanjing Kexue/Environ Sci. 2011;32:1524–1528.
  • Torres CI, Lee HS, Rittmann BE. Carbonate species as OH− carriers for decreasing the pH gradient between cathode and anode in biological fuel cells. Environ Sci Technol. 2008;42:8773–8777.
  • Cheng S, Logan BE. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun. 2007;9:492–496.
  • Ahn Y, Logan BE. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour Technol. 2010;101:469–475.
  • Behera M, Murthy SSR, Ghangrekar MM. Effect of operating temperature on performance of microbial fuel cell. Water Sci Technol. 2011;64:917–922.
  • Campo AG, Lobato J, Ca˜nizares P, et al. Short-term effects of temperature and COD in a microbial fuel cell. Appl Energy. 2013;101:213–217.
  • Cheng S, Xing D, Logan BE. Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens Bioelectron. 2011;26:1913–1917.
  • Guerrero AL, Scott K, Head IM, et al. Effect of temperature on the performance of microbial fuel cells. Fuel. 2010;89:3985–3994.
  • Larios ALV, Feria OS, Huerta GV, et al. Internal resistance and performance of microbial fuel cells: influence of cell configuration and temperature. J New Mater Electrochem Syst. 2011;14:99–105.
  • Liu L, Tsyganova O, Lee DJ, et al. Anodic biofilm in single-chamber microbial fuel cells cultivated under different temperatures. Int J Hydrogen Energy. 2012;37(20):15792–15800.
  • Liu Y, Climent V, Berná A, et al. Effect of temperature on the catalytic ability of electrochemically active biofilm as anode catalyst in microbial fuel cells. Electroanalysis. 2011;23:387–394.
  • Michie IS, Kim JR, Dinsdale RM, et al. Operational temperature regulates anodic biofilm growth and the development of electrogenic activity. Appl Microbiol Biotechnol. 2011;92:419–430.
  • Patil SA, Harnisch F, Kapadnis B, et al. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. Biosens Bioelectron. 2010;26:803–808.
  • Tang YL, He YT, Yu PF, et al. Effect of temperature on electricity generation of single-chamber microbial fuel cells with proton exchange membrane. Adv Mater Res. 2012;393–395:1169–1172.
  • Wang X, Feng YJ, Qu YP, et al. Effect of temperature on performance of microbial fuel cell using beer wastewater. Huanjing Kexue/Environ Sci. 2008;29:3128–3132.
  • Wang XL, Wu C, Zhang JQ, et al. Acclimation stage on the performance of microbial fuel cells subjected to variation in COD, temperature, and electron acceptor. Adv Mater Res. 2011;183–185:2346–2350.
  • Hong SW, Chang IS, Choi YS, et al. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresour Technol. 2009;100:3029–3035.
  • Liu ZH, Li XM, Zheng FL, et al. Operating characteristics of microbial fuel cell using sludge. China Environ Sci. 2012;32:268–273.
  • Michie IS, Kim JR, Dinsdale RM, et al. The influence of psychrophilic and mesophilic start-up temperature on microbial fuel cell system performance. Environ Sci Technol. 2011b;4:1011–1019.
  • Aelterman P, Versichele M, Marzorati M, et al. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour Technol. 2008;99:8895–8902.
  • Goud RK, Babu PS, Mohan SV. Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): bio-electrochemical evaluation under increasing substrate loading condition. Int J Hydrogen Energy. 2011;36:6210–6218.
  • Juang DF, Yang PC, Chou HY, et al. Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells. Biotechnol Lett. 2011;33:2147–2160.
  • Kim JR, Premier GC, Hawkes FR, et al. Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate. Bioresour Technol. 2010;101:1190–1198.
  • Lorenzo MD, Scott K, Curtis TP, et al. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell. Chem Eng J. 2010;156:40–48.
  • Mohan SV, Raghavulu SV, Srikanth S, et al. Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: influence of substrate loading rate. Curr Sci. 2007;92:1720–1726.
  • Mohan SV, Raghavulu SV, Peri D, et al. Integrated function of microbial fuel cell (MFC) as bioelectrochemical treatment system associated with bioelectricity generation under higher substrate load. Biosens Bioelectron. 2009;24:2021–2027.
  • Nam JY, Kim HW, Lim KH, et al. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell. Bioresour Technol. 2010;101:S33–S37.
  • Reddy MV, Srikanth S, Mohan SV, et al. Phosphatase and dehydrogenase activities in anodic chamber of single chamber microbial fuel cell (MFC) at variable substrate loading conditions. Bioelectrochemistry. 2010;77:125–132.
  • Velvizhi G, Mohan SV. Electrogenic activity and electron losses under increasing organic load of recalcitrant pharmaceutical wastewater. Int J Hydrogen Energy. 2012;37(7):5969–5978.
  • Guillou DH, Tribollet B, Festy D. Influence of the hydrodynamics on the biofilm formation by mass transport analysis. Bioelectrochemistry. 2000;53:119–125.
  • Rickard AH, McBain AJ, Stead AT, et al. Shear rate moderates community diversity in freshwater biofilms. Appl Environ Microbiol. 2004;70:7426–7435.
  • Aaron D, Tsouris C, Hamilton CY, et al. Assessment of the effects of flow rate and ionic strength on the performance of an air-cathode microbial fuel cell using electrochemical impedance spectroscop. Energies. 2010;3:592–606.
  • Ieropoulos I, Winfield J, Greenman J. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresour Technol. 2010;101:3520–3525.
  • Juang DF, Yang PC, Kuo TH. Effects of flow rate and chemical oxygen demand removal characteristics on power generation performance of microbial fuel cells. Int J Environ Sci Technol. 2012;9:267–280.
  • Pham HT, Boon N, Aelterman P, et al. High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell. Microb Biotechnol. 2008;6:487–496.
  • Rochex A, Godon JJ, Bernet N, et al. Role ofshear stress on composition, diversity and dynamics of biofilm bacterial communities. Water Res. 2008;42(20):4915–4922.
  • Rozendal RA, Hamelers HVM, Buisman CJN. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol. 2006;40:5206–5211.
  • Rabaey K, Lissens G, Siciliano S, et al. A microbial fuel cell capable of converting glucose to electricity at high rate andefficiency. Biotechnol Lett. 2003;25:1531–1535.
  • Rosenbaum M, Schroder U, Scholz F. Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions. J. Solid State Electrochem. 2006;10:872–878.
  • Ieropoulos I, Melhuish C, Greenman J. EcoBot-II: an artificial agent with a natural metabolism. Adv Robot Syst. 2005c;2:295–300.
  • Shantaram A, Beyenal H, Veluchamy RRA, et al. Wireless sensors powered by microbial fuel cells. Environ Sci Technol. 2005;39:5037–5042.
  • Liu H, Grot S, Logan BE. Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol. 2005c:4317–4320.
  • Min B, Kim JR, Oh SE, et al. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 2005b;39:4961–4968.
  • Suzuki S, Karube I, Matsunaga T. Application of a biochemical fuel cell to wastewater. Biotechnol Bioeng Symp. 1978;8:501–511.
  • Zuo Y, Maness PC, Logan BE. Electricity production from steam exploded corn stover biomass. Energy Fuel. 2006;20:1716–1721.
  • Kim JR, Min B, Logan BE. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol. 2005;68:23–30.
  • Ghangrekar MM, Shinde VB. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour Technol. 2007;98:2879–2885.
  • Chang IS, Moon H, Jang JK, et al. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron. 2005;20:1856–1859.
  • Moon H, Chang IS, Kang KH, et al. Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol Lett. 2004;26:1717–1721.
  • Kang KH, Jang JK, Pham TH, et al. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol Lett. 2003;25:1357–1361.
  • Kumlanghan A, Liu J, Thavarungkul P, et al. Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosens Bioelectron. 2007;22:2939–2944.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.