979
Views
16
CrossRef citations to date
0
Altmetric
Articles

Ethanol production by syngas fermentation in a continuous stirred tank bioreactor using Clostridium ljungdahlii

, ORCID Icon &
Pages 221-237 | Received 21 Nov 2016, Accepted 17 Feb 2017, Published online: 16 May 2017

References

  • Subramani V, Gangwal SK. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energ Fuel. 2008;22:814–839.
  • Jiang Y, Liu J, Jiang W, et al. Current status and prospects of industrial bio-production of n-butanol in China. Biotechnol Adv. 2015;33:1493–1501.
  • Datta R, Maher MA, Jones C, et al. Ethanol-the primary renewable liquid fuel. J Chem Technol Biotechnol. 2011;86:473–480.
  • Acharya B, Roy P, Dutta A. Review of syngas fermentation processes for bioethanol. Biofuels. 2014;5(5):551–564.
  • Munasinghe PC, Khanal SK. Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Progr. 2010;26(6):1616–1621.
  • Roy P, Dutta A, Chang S. Development and evaluation of a functional bioreactor for CO fermentation into ethanol. Bioresour Bioproc. 2016;3(1):1–8.
  • Richter H, Martin ME, Angenent LT. A two-stage continuous fermentation system for conversion of syngas into ethanol. Energies. 2013;6:3987–4000.
  • Devarapalli M, Atiyeh HK, Phillips JR, et al. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei. Bioresour Technol. 2016;209:56–65.
  • Abubackar HN, Veiga MC, Kennes C. Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod Bioref. 2011;5:93–114.
  • Liu K, Atiyeh HK, Tanner RS, et al. Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi. Bioresour Technol. 2012;104:336–341.
  • Huhnke RL, Lewis RS, Tanner RS. Isolation and characterization of novel Clostridial Species. US Patent No. 7704,723. 2010.
  • Saxena J, Tanner R. Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. World J Microbiol Biotechnol. 2012;28:1553–1561.
  • Phillips JR, Remondet NM, Atiyeh HK, et al. Designing Syngas Fermentation Medium for Fuels and Bulk Chemicals Production. Proceedings of 2011 ASABE Annual International Meeting; August 7-10; Louisville, KY, USA, Paper # 1111052; p. 1–12; 2011.
  • Xu D, Tree DR, Lewis RS. The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy. 2011;35:2690–2696.
  • Vane LM, Alvarez FR, Huang Y, et al. Experimental validation of hybrid distillation-vapor permeation process for energy efficient ethanol-water separation. J Chem Technol Biotechnol. 2010;85:502–511.
  • Shen Y, Brown R, Wen Z. Syngas fermentation of Clostridium carboxidivorans P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance. Biochem Engg J. 2014;85:21–29.
  • Orgill JJ, Atiyeh HK, Devarapalli M, et al. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors. Bioresour Technol. 2013;133:340–346.
  • Mohammadi M, Younesi H, Najafpour G, et al. Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol. 2012;87:837–843.
  • Ungerman AJ, Heindel TJ. Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations. Biotechnol Prog. 2007;23:613–620.
  • Bredwell MD, Srivastava P, Worden RM. Reactor design issues for synthesis-gas fermentations. Biotechnol Prog. 1999;15:834–844.
  • Alsaker KV, Paredes C, Papoutsakis ET. Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng. 2010;105:1131–1147.
  • Cotter JL, Chinn MS, Grunden AM. Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzyme Microb Technol. 2009;44:281–288.
  • Sherwood TK, Pigford RL, Wilke CR. Mass transfer. New York: McGraw-Hill Inc; 1975.
  • Ahmed T, Semmens MJ. Use of sealed and hollow fibers for bubble less membrane aeration: experimental studies. J Membr Sci. 1992;60(1-2):1–10.
  • Skidmore BE. Syngas fermentation: quantification of assay techniques, reaction kinetics and pressure dependencies of the Clostridium P11 hydrogenase [Master's thesis]. Provo, UT: Bringham Young University; 2010.
  • Klasson KT, Ackerson CMD, Clausen EC, et al. Biological conversion of synthesis gas into fuels. Int J Hydrogen Energ. 1992;17(4):281–288.
  • Abubackar HN, Bengelsdorf FR, Durre P, et al. Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia. Appl Energy. 2016;169:210–217.
  • Kopke M, Held C, Hujer S, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci. 2010;107(29):13087–13092.
  • Richter H, Molitor B, Wei H, et al. Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression. Energy Environ Sci. 2016;9:2392–2399.
  • Mohammadi M, Mohamed AR, Najafpour G, et al. Clostridium ljungdahlii for production of biofuel from synthesis gas. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2016;38(3):427–434.
  • Hu P, Bowen SH, Lewis RS. A thermodynamic analysis of electron production during syngas fermentation. Bioresour Technol. 2011;102:8071–8076.
  • Younesi H, Najafpour G, Mohamed AR. Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem Eng J. 2005;27:110–119.
  • Klasson KT, Ackerson CMD, Clausen EC, et al. Biological conversion of coal and coal-derived synthesis gas. Fuel. 1993;72:1673–1678.
  • Alsaker KV, Paredes C, Papoutsakis ET. Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng. 2010;105:1131–1147.
  • Kundiyana DK, Huhnke RL, Wilkins MR. Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations. J Biosci Bioeng. 2010;109(5):492–498.
  • Aghbashlo M, Tabatabaei M, Dadak A, et al. Exergy-based performance analysis of a continuous stirred bioreactor for ethanol and acetate fermentation from syngas via Wood–Ljungdahl pathway. Chem Eng Sci. 2016;143:36–46.
  • Sudiyo R, Andersson B. Bubble trapping and coalescence at the baffles in stirred tank reactors. AIChE J. 2007;53:2232–2239.
  • Maddipati P, Atiyeh HK, Bellmer DD, et al. Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour Technol. 2011;102:6494–6501.
  • Fernandez-Naveira A, Abubackar HN, Veiga MC, et al. Efficient butanol-ethanol (BE) production from carbon monoxide fermentation by Clostridium carboxidivorans. Appl Microbiol Biotechnol. 2010;100(7):3361–3370.
  • Abubackar HN, Veiga MC, Kennes C. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour Technol. 2015;186:122–127.
  • Chang IS, Kim DH, Kim BH, et al. CO fermentation of Eubacterium limosum KIST612. J Microbiol Biotechnol. 1998;8:134–140.
  • Haddad M, Cimpoia R, Guiot SR. Performance of Carboxydothermus hydrogenoformans in a gas-lift reactor for syngas upgrading into hydrogen. Int J Hydrogen Energ. 2014;39:2543–2548.
  • Younesi H, Najafpour G, Mohamed AR. Liquid fuel production from synthesis gas via fermentation process in a continuous tank bioreactor (CSTBR) using Clostridium ljungdahlii. Iranian J Biotechnol. 2006;4:45–53.
  • Ukpong MN, Atiyeh HK, De Lorme MJ, et al. Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor. Biotechnol. Bioeng. 2012;109:2720–2728.
  • Mohammadi M, Najafpour GD, Younesi H, et al. Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sustain Energy Rev. 2011;15:4255–4273.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.