2,642
Views
2
CrossRef citations to date
0
Altmetric
Articles

Nutrient removal and recovery from digestate: a review of the technology

, &
Pages 247-262 | Received 28 Dec 2015, Accepted 07 May 2016, Published online: 15 Jun 2017

References

  • Vaneeckhaute C, Ghekiere G, Michels E, et al. Assessing nutrient use efficiency and environmental pressure of macronutrients in biobased mineral fertilizers: a review of recent advances and best practices at field scale. Adv Agron. 2014;128:137–180.
  • Chen XY, Vinh-Thang H, Avalos Ramirez A, et al. Membrane gas separation technologies for biogas upgrading. Royal Soc Chem Adv. 2015;5(31):24399–24448.
  • Makadi M, Tomócsik A Orosz V. Digestate: a new nutrient source – review. Energy. 2012;4(7.5):8–7.
  • Chen G, Yue PL, Mujumdar AS. Sludge dewatering and drying. Drying Technol. 2002;20(4-5):883–916.
  • Chernicharo CAL. Post-treatment options for the anaerobic treatment of domestic wastewater. Rev Environ Sci Bio/Technol. 2006;5(1):73–92.
  • Penetra RG, Reali MAP, Foresti E, et al. Post-treatment of effluents from anaerobic reactor treating domestic sewage by dissolved-air flotation. Water Sci Technol. 1999;40(8):137–143.
  • Buzzini AP, Patrizzia LJ, Motheo AJ, et al. Preliminary evaluation of the electrochemical and chemical coagulation processes in the post-treatment of effluent from an upflow anaerobic sludge blanket (UASB) reactor. J Environ Manage. 2007;85(4):847–857.
  • Morales N, Boehler MA, Buettner S, et al. Recovery of N and P from urine by struvite precipitation followed by combined stripping with digester sludge liquid at full scale. Water. 2013;5(3):1262–1278.
  • Gerardo ML, Zacharof MP, Lovitt RW. Strategies for the recovery of nutrients and metals from anaerobically digested dairy farm sludge using cross-flow microfiltration. Water Res. 2013;47(14):4833–4842.
  • Scholz W, Lucas M. Techno-economic evaluation of membrane filtration for the recovery and re-use of tanning chemicals. Water Res. 2003;37(8):1859–1867.
  • Guo W, Ngo H-H, Li J. A mini-review on membrane fouling. Bioresource Technol. 2012;122:27–34.
  • Waeger F, Delhaye T, Fuchs W. The use of ceramic microfiltration and ultrafiltration membranes for particle removal from anaerobic digester effluents. Sep Purif Technol. 2010;73(2):271–278.
  • Masse L, Masse DI, Pellerin Y. The use of membranes for the treatment of manure: a critical review. Biosyst Eng. 2007;98(4):371–380.
  • Cath TY, Childress AE, Elimelech M. Forward osmosis: principles, applications, and recent developments. J Membrane Sci. 2006;281(1-2):70–87.
  • Vaneeckhaute C, Meers E, Michels E, et al. Fate of macronutrients in water treatment of digestate using vibrating reversed osmosis. Water Air Soil Pollut. 2012;223(4):1593–1603.
  • Doyle JD, Parsons SA. Struvite formation, control and recovery. Water Res.2002;36(16):3925–3940.
  • El Diwani G, El-Rafie S, El-Ibiari NN, et al. Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer. Desalination. 2007;214(1-3):200–214.
  • Uysal A, Yilmazel YD, Demirer GN. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J Hazard Mater. 2010;181(1-3):248–254.
  • Capodaglio AG, Hlavínek P, Raboni M. Physico-chemical technologies for nitrogen removal from wastewaters: a review. Rev Ambient Água. 2015;10(3):481–498.
  • Poletti A, Poletti L, Santini S, et al. Renewable energy from ammonium-rich anaerobic wastewaters and liquid sludges. Virt&L-Comm. 2012;2: 2–2012.
  • Tünay O, Kabdasli I, Orhon D, et al. Ammonia removal by magnesium ammonium phosphate in industrial wastewaters. Water Sci Technol. 1997;36(2-3):225–228.
  • Çelen I, Turker M. Recovery of ammonia as struvite from anaerobic digester effluents. Environ Technol. 2001;22(11):1263–1272.
  • Nelson NO, Mikkelse RL, Hesterberg DL. Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg:P ratio and determination of rate constant. Bioresource Technol. 2003;89(3):229–236.
  • Schulze-Rettmer R. The simultaneous chemical precipitation of ammonium and phosphate in the form of magnesium–ammonium–phosphate. Water Sci Technol. 1991;23(4-6):659–667.
  • Zhang C, Chen Y. Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal. Environ Sci Technol. 2009;43(16):6164–6170.
  • Lee SI, Weon SY, Lee CW, et al. Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere. 2003;51(4):265–271.
  • Emerson K., Russo RC, Lund RE, et al. Aqueous ammonia equilibrium calculations: effect of pH and temperature. J Fish Res Board Can. 1975;32(12):2379–2383.
  • Serna-Maza A, Heaven S, Banks CJ. Ammonia removal in food waste anaerobic digestion using a side-stream stripping process. Bioresource Technol. 2014;152:307–315.
  • Tao W, Ukwuani AT. Coupling thermal stripping and acid absorption for ammonia recovery from dairy manure: ammonia volatilization kinetics and effects of temperature, pH and dissolved solids content. Chem Eng J. 2015;280:188–196.
  • La J, Kim T, Jang JK, et al. Ammonia nitrogen removal and recovery from swine wastewater by microwave radiation. Environ Eng Res. 2014;19(4):381–385.
  • Battimelli A, Millet C, Delgenès JP, et al. Anaerobic digestion of waste activated sludge combined with ozone post-treatment and recycling. Water Sci Technol. 2003;48(4):61–68.
  • Kuo CH, Yuan F, O'Hill D. Kinetics of oxidation of ammonia in solutions containing ozone with or without hydrogen peroxide. Ind Eng Chem Res. 1997;36(10):4108–4113.
  • Aguilar C, Garcia R, Soto-Garrido G, et al. Catalytic wet air oxidation of aqueous ammonia with activated carbon. Appl Catal B Environ. 2003;46(2):229–237.
  • Ou HH, Liao CH, Liou YH, et al. Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes. Environ Sci Technol. 2008;42(12):4507–4512.
  • He S, Huang Q, Zhang Y, et al. Investigation on direct and indirect electrochemical oxidation of ammonia over Ru−Ir/TiO2 anode. Ind Eng Chem Res. 2015;54(5):1447–1451.
  • Rodríguez Arredondo MR, Kuntke P, Jeremiasse AW, et al. Bioelectrochemical systems for nitrogen removal and recovery from wastewater. Environ Sci Water Res Technol. 2015;1(1):22–33.
  • Lin L, Yuan S, Chen J, et al. Removal of ammonia nitrogen in wastewater by microwave radiation. J Hazard Mater. 2009;161(2-3):1063–1068.
  • Lin L, Chen J, Xu Z, et al. Removal of ammonia nitrogen in wastewater by microwave radiation: a pilot-scale study. J Hazard Mater. 2009;168(2-3):862–867.
  • Remya N, Lin JG. Current status of microwave application in wastewater treatment-a review. Chem Eng J. 2011;166(3):797–813.
  • Nguyen NC, Chen S-S, Yang H-Y, et al. Application of forward osmosis on dewatering of high nutrient sludge. Bioresource Technol. 2013;132:224–229.
  • Xie M, Nghiem LD, Price WE, et al. Toward resource recovery from wastewater: phosphorus extraction from digested sludge using hybrid forward osmosis - membrane distillation process. Environ Sci Technol Lett. 2014;1(2):191–195.
  • Pell Frischmann Consultants Ltd. Enhancement and treatment of digestates from anaerobic digestion. Banbury (UK): WRAP; 2012.
  • Déléris S, Paul E, Audic JM, et al. Effect of ozonation on activated sludge solubilisation and mineralization. Ozone Sci Eng. 2000;22(5):473–486.
  • Kamiya T, Hirotsuji J. New combined system of biological process and intermittent ozonation for advanced wastewater treatment. Water Sci Technol. 1998;38(8-9):147–153.
  • Rocher M, Goma G, Pilas-Begue A, et al. Towards a reduction in excess sludge production in activated sludge processes: biomass physicochemical treatment and biodegradation. Appl Microbiol Biotechnol. 1999;51(6):883–890.
  • Liu Y. Chemically reduced excess sludge production in the activated sludge process. Chemosphere. 2003;50(1):1–7.
  • Furness DT, Hoggett LA, Judd SJ. Thermochemical treatment of sewage sludge. Water Environ J. 2000;14(1):57–65.
  • Pedrazzi S, Allesina G, Belló T, et al. Digestate as bio-fuel in domestic furnaces. Fuel Process Technol. 2015;130:172–178.
  • Pecen J, Piksa Z, Zabloudilová P. Alternative use of a compressed component of a digestate from agricultural BGSs (biogas stations). J Energy Power Eng. 2014;8(4):646–655.
  • Fernandez-Lopez M, Puig-Gamero M, Lopez-Gonzalez D, et al. Life cycle assessment of swine and dairy manure: pyrolysis and combustion processes. Bioresource Technol. 2015;182:184–192.
  • Kratzeisen M, Starcevic N, Martinov M, et al. Applicability of biogas digestate as solid fuel. Fuel. 2010;89(9):2544–2548.
  • Li H, Lindmark J, Nordlander E, et al. Using the solid digestate from a wet anaerobic digestion process as an energy resource. Energy Technol. 2013;1(1):94–101.
  • Moltó J, Barneto AG, Ariza J, et al. Gas production during the pyrolysis and gasification of biological and physico-chemical sludges from oil refinery. J Anal Appl Pyrol. 2013;103(2):167–172.
  • Neumann J, Binder S, Apfelbacher A, et al. Production and characterization of a new quality pyrolysis oil, char and syngas from digestate – introducing the thermo-catalytic reforming process. J Anal Appl Pyrol. 2015;113:137–142.
  • Aznar M, San Anselmo M, Manya JJ, et al. Experimental study examining the evolution of nitrogen compounds during the gasification of dried sewage sludge. Energy Fuels. 2009;23(6):3236–3245.
  • Wojciechowska E. Application of microwaves for sewage sludge conditioning. Water Res. 2005;39(19):4749–4754).
  • Yu Q, Lei HY, Li Z, et al. Physical and chemical properties of waste-activated sludge after microwave treatment. Water Res. 2010;44(9):2841–2849.
  • Eskicioglu C, Droste RL, Kennedy KJ. Performance of anaerobic waste activated sludge digesters after microwave pretreatment. Water Environ Res. 2007;79(11):2265–2273.
  • Eskicioglu C, Kennedy KJ, Droste RL. Initial examination of microwave pretreatment on primary, secondary and mixed sludges before and after anaerobic digestion. Water Sci Technol. 2008;57(3):311–317.
  • Yu Q, Lei H, Yu G, et al. Influence of microwave irradiation on sludge dewaterability. Chem Eng J. 2009;155(1-2):88–93.
  • Liao PH, Wong WT, Lo KV. Advanced oxidation process using hydrogen peroxide/microwave system for solubilization of phosphate. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2005;40(9):1753–1761.
  • Wong WT, Chan WI, Liao PH, et al. A hydrogen peroxide/microwave advanced oxidation process for sewage sludge treatment. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2006;41(11):2623–2633.
  • Afolabi OOD, Sohail M, Thomas CPL. Microwave hydrothermal carbonization of human biowastes. Waste Biomass Valorization. 2015;6(2):147–157.
  • Hong SM, Park JK, Lee YO. Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids. Water Res. 2004;38(6):1615–1625.
  • Libra JA, Ro KS, Kammann C, et al. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2011;2(1):71–106.
  • Peterson AA, Vogel F, Lachance RP, et al. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci. 2008;1(1):32–65.
  • Sobhy A, Chaouki J. Microwave-assisted biorefinery. Chem Eng Trans. 2010;19:25–30.
  • Yin C. Microwave-assisted pyrolysis of biomass for liquid biofuel production. Bioresource Technol. 2012;120:273–284.
  • He C, Wang K, Yang Y, et al. Effective nitrogen removal and recovery from dewatered sewage sludge using a novel integrated system of accelerated hydrothermal deamination and air stripping. Environ Sci Technol. 2015;49(11):6872–6880.
  • Tiehm A, Nickel K, Zellhorn M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res. 2001;35(8):2003–2009.
  • Onyeche TI, Schlafer O, Bormann H, et al. Ultrasonic cell disruption of stabilized sludge with subsequent anaerobic digestion. Ultrasonics. 2002;40(1-8):31–35.
  • Gonze E, Pillot S, Valette E, et al. Ultrasonic treatment of an aerobic activated sludge in a batch reactor. Chem Eng Process Process Intensif. 2003;42(12):965–975.
  • Na S, Kim Y-U, Khim J. Physiochemical properties of digested sewage sludge with ultrasonic treatment. Ultrason Sonochem. 2007;14(3):281–285.
  • Teglia C, Tremier A, Martel JL. Characterization of solid digestates: part 2, assessment of the quality and suitability for composting of six digested products. Waste Biomass Valorization. 2011;2(2):113–126.
  • Diaz FL, Savage MG, Golueke GC. Composting of municipal solid wastes. In: Tchonobanoglous G, Kreith F, editors. Handbook of solid waste management. 2nd ed. London (UK): McGraw-Hill; 2002.
  • Fuchs JG, Kupper T, Tamm L, et al. Compost and digestate: sustainability, benefits, impacts for the environment and for plant production. Proceedings of the international congress CODIS 2008; 2008 Feb 27–29; Solothurn, Switzerland: Research Institute of Organic Agriculture FiBL.
  • Bustamante MA, Restrepo AP, Alburquerque JA, et al. Recycling of anaerobic digestates by composting: effect of the bulking agent used. J Clean Prod. 2013;47:61–69.
  • Rajpal A, Bhargava R, Chopra AK, et al. Vermistabilization and nutrient enhancement of anaerobic digestate through earthworm species Perionyx excavatus and Perionyx sansibaricus. J Mater Cycles Waste Manage. 2014;16(2):219–226.
  • Pathma J, Sakthivel N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus. 2012;1(1):1–19.
  • Tognetti C, Mazzarino MJ, Laos F. Cocomposting biosolids and municipal organic waste: effects of process management on stabilization and quality. Biol Fert Soils. 2007;43(4):387–397.
  • Bustamante MA, Alburquerque JA, Restrepo AP, et al. Co-composting of the solid fraction of anaerobic digestates, to obtain added-value materials for use in agriculture. Biomass Bioenergy. 2012;43:26–35.
  • Kirk TK, Farrell RL. Enzymatic ‘'combustion'’: the microbial degration of lignin. Annu Rev Microbiol. 1987;41:465–505.
  • Yue Z, Teater C, Liu Y, et al. A sustainable pathway of cellulosic ethanol production integrating anaerobic digestion with biorefining. Biotechnol Bioeng. 2010;105(6):1031–1039.
  • Blunk SL, Jenkins BM, Kadam KL, Combustion Properties of Lignin Residue from Lignocellulose Fermentation. Davis, California, USA: National Renewable Energy Laboratory-NREL; 2000.
  • Teater C, Yue Z, Maclellan J, et al. Assessing solid digestate from anaerobic digestion as feedstock for ethanol production. Bioresource Technol. 2011;102(2):1856–1862.
  • Yue Z, Teater C, Maclellan J, et al. Development of a new bioethanol feedstock – anaerobically digested fiber from confined dairy operations using different digestion configurations. Biomass Bioenergy. 2011;35(5):1946–1953.
  • Velis CA, Longhurst PJ, Drew GH, et al. Biodrying for mechanical-biological treatment of wastes: a review of process science and engineering. Bioresource Technol. 2009;100(11):2747–2761.
  • Wright P, Inglis S. Moisture, density, and porosity changes as dairy manure is biodried. Proceedings of 2002 ASABE Annual Meeting; Chicago, Il, USA; 2002.
  • Léveillé F, Zegan D, Carrier R. Hygiénisation de résidus organiques d'origine agricole pour une valorisation accrue: Évaluation d'un bioséchoir basé sur la technologie SHOCMD. Canada: Conseil pour le Développement de l'Agriculture du Québec; 2009.
  • Avalos Ramirez A, Godbout S, Léveillé F, et al. Effect of temperature and air flow rate on carbon and nitrogen compounds changes during the biodrying of swine manure in order to produce combustible biomasses. J Chem Technol Biotechnol. 2012;87(6):831–836.
  • Uggetti E, Sialve B, Trably E, et al. Review Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels Bioprod Biorefin. 2014;8(4):516–529.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.
  • González-Fernández C, Molinuevo-Salces B, García-González M. Nitrogen transformations under different conditions in open ponds by means of microalgae–bacteria consortium treating pig slurry. Bioresource Technol. 2011;102(2):960–966.
  • Khanh N, Kitaya Y, Xiao L, et al. Selection of microalgae suitable for culturing with digestate from methane fermentation. Environ Technol. 2013;34(13-14):2039–2045.
  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM. Microalgae and wastewater treatment. Saudi J Biol Sci. 2012;19(3):257–275.
  • Golueke CG, Oswald WJ, Gotaas HB. Anaerobic digestion of algae. Appl Microbiol. 1957;5(1):47–55.
  • Fouilland E, Vasseur C, Leboulanger C, et al. Coupling algal biomass production and anaerobic digestion: production assessment of some native temperate and tropical microalgae. Biomass Bioenergy. 2014;70:564–569.
  • Vasseur C, Bougaran G, Garnier M, et al. Carbon conversion efficiency and population dynamics of a marine algae–bacteria consortium growing on simplified synthetic digestate: first step in a bioprocess coupling algal production and anaerobic digestion. Bioresource Technol. 2012;119:79–87.
  • Uduman N, Qi Y, Danquah MK, et al. Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sust Energ. 2010;2(1)012701.
  • Zamalloa C, Vulsteke E, Albrecht J, et al. The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresource Technol. 2011;102(2):1149–1158.
  • Collet P, Hélias A, Ladon L, et al. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technol. 2011;102(1):207–214.
  • Fuchs W, Drosg B. Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Sci Technol. 2013;67(9):1984–1993.
  • Scaglione D, Tornotti G, Teli A, et al. Nitrification denitrification via nitrite in a pilot-scale SBR treating the liquid fraction of co-digested piggery/poultry manure and agro-wastes. Chem Eng J. 2013;228:935–943.
  • Tchobanoglous G, Burton FL, Stensel HD. Wastewater engineering treatment and reuse. 4th ed. New York, USA: McGraw-Hill; 2003.
  • Magrí A, Béline F, Dabert P. Feasibility and interest of the anammox process as treatment alternative for anaerobic, digester supernatants in manure processing – An overview. J Environ Manage. 2013;131:170–184.
  • Cervantes FJ, editor. Environmental technologies to treat nitrogen pollution: principles and engineering. London (UK): IWA Publishing; 2009.
  • Gustavsson DJI. Biological sludge liquor treatment at municipal wastewater treatment plants – a review. Vatten. 2010;66(3):179–192.
  • Jetten MSM, Horn SJ, Van Loosdrecht MCM. Towards a more sustainable municipal wastewater treatment system. Water Sci Technol. 1997;35(9):171–180.
  • Fux C, Siegrist H. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations. Water Sci Technol. 2004;50(10):19–26.
  • Stephenson D, Stephenson T. Bioaugmentation for enhancing biological wastewater treatment. Biotechnol Adv. 1992;10(4):549–559.
  • Katehis D, Murthy S, Wett B, et al. Nutrient removal from anaerobic digester side-stream at the Blue Plains AWTP. Proceedings of the Water Environment Federation – Annual Technical Exhibition and Conference 79th; 2006 Oct 21–25; Dallas, Texas, USA.
  • Van Hulle SWH, Vandeweyer HJP, Meesschaert BD, et al. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem Eng J. 2010;162(1):1–20.
  • Spagni A, Marsili-Libelli S. Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate. Bioresource Technol. 2009;100(2):609–614.
  • Lackner S, Gilbert EM, Vlaeminck SE, et al. Full-scale partial nitritation/anammox experiences – an application survey. Water Res. 2014;55(15):292–303.
  • Sun SP, Nàcher CP, Merkey B, et al. Effective biological nitrogen removal treatment process for domestic wastewaters with low C/N ratios: a review. Environ Eng Sci. 2010;27(2):111–126.
  • Fatone F, Longo S, Frison N, et al. Valorization of sewage sludge for via nitrite nutrients removal from anaerobic effluents. Presented at: Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies. Engineering Conferences International; 2014 Jun 8–14; Otranto, Italy.
  • Schaubroeck T, De Clippeleir H, Weissenbacher N, et al. Environmental sustainability of an energy self-sufficient sewage treatment plant: improvements through DEMON and co-digestion. Water Res. 2015;74:166–179.
  • Joss A, Salzgeber D, Eugster J, et al. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environ Sci Technol. 2009;43(14):5301–5306.
  • Desloover J, Vlaeminck SE, Clauwaert P, et al. Strategies to mitigate N2O emissions from biological nitrogen removal systems. Curr Opin Biotechnol. 2012;23(3):474–482.
  • Anderson CJ, Carlson CJ, Low EJ, et al. Performance of a constructed wetland in Grand Marais, Manitoba, Canada: removal of nutrients, pharmaceuticals, and antibiotic resistance genes from municipal wastewater. Chem Cent J. 2013;7(54).
  • Pavan F, Breschigliaro S, Borin M. Screening of 18 species for digestate phytodepuration. Environ Sci Pollut Res. 2015;22(4):2455–2466.
  • Brix H. Wastewater treatment in constructed wetlands: system design, removal processes, and treatment processes. In: Moshiri GA, editor. Constructed wetlands for water quality improvement. London (UK): Lewis Publishers; 1993.
  • Kadlec HR, Wallace DS. Treatment wetlands. 2nd ed. United States: Taylor & Francis Group, CRC Press ; 2009.
  • Sooknah RD, Wilkie AC. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Eng. 2004;22(1):27–42.
  • Fountoulakis M, Terzakis S, Chatzinotas A, et al. Pilot-scale comparison of constructed wetlands operated under high hydraulic loading rates and attached biofilm reactors for domestic wastewater treatment. Sci Total Environ. 2009;407(8):2996–3003.
  • Maucieri C, Breschigliaro S, Barbera CA, et al. Depurative performance and methane emission of a pilot hybrid constructed wetland plant treating biogas digestate liquid fraction. Proceedings of Wetland Systems Ecology, Functioning and Management; 2013 Sep 1–4; Padua, Italy: PAN srl Via della Croce Rossa.
  • Peng Y, Zhu G. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl Microbiol Biotechnol. 2006;73(1):15–26.
  • Dosta J, Fernandez I, Vásquez-Padin JR, et al. Short- and long-term effects of temperature on the Anammox process. J Hazard Mater. 2008;154(1-3):688–693.
  • Isaka K, Date Y, Kimura Y, et al. Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures. FEMS Microbiol Lett. 2008;282(1):32–38.
  • Picioreanu C, van Loosdrecht MCM, Heijnen JJ. Modelling the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Water Sci Technol. 1997;36(1):147–156.
  • Wett B, Rostek R, Rauch W, et al. pH-controlled reject-water-treatment. Water Sci Technol. 1998;37(12):165–172.
  • Van Kempen R, Mulder JW, Uijterlinde CA, et al. Overview: full scale experience of the SHARON® process for treatment of rejection water of digested sludge dewatering. Water Sci Technol. 2001;44(1):145–152.
  • Regmi P, Miller MW, Holgate B, et al. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res. 2014;57(15):162–171.
  • Lotti T, Kleerebezem R, Kip CvET, et al. Anammox growth on pretreated municipal wastewater. Environ Sci Technol. 2014;48(14):7874–7880.
  • Strous M, Kuenen JG, Jetten M. Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol. 1999;65(7):3248–3250.
  • Strous M, Gerven EV, Kuenen JG, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Appl Environ Microbiol. 1997;63(6):2446–2448.
  • Vázquez-Padín JR, Pozo MJ, Jarpa M, et al. Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR. J Hazard Mater. 2009;166(1):336–341.
  • Mulder JW, Loosdrecht MV, Hellinga C, et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Sci Technol. 2001;43(11):127–134.
  • Kalyuzhnyi S, Gladchenko M, Mulder A, et al. DEAMOX—New biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Res. 2006;40(19):3637–3645.
  • Salem S, Berends DHJG, van der Roest HF, et al. Full-scale application of the BABE® technology. Water Sci Technol. 2004;50(7):87–96.
  • Furukawa K, Lieu PK, Tokitoh H, et al. Development of single-stage nitrogen removal using anammox and partial nitritation (SNAP) and its treatment performances. Water Sci Technol. 2006;53(6):83–90.
  • Daverey A, Su SH, Huang YT, et al. Nitrogen removal from opto-electronic wastewater using the simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) process in sequencing batch reactor. Bioresource Technol. 2012;113:225–231.
  • Abderezzak B, Khelidj B, Kellaci A, et al. The smart use of biogas: decision support tool. AASRI Procedia. 2012;2:156–162.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.