243
Views
1
CrossRef citations to date
0
Altmetric
Articles

Xylitol production from lignocellulosic pentosans using Kluyveromyces marxianus: kinetic modelling of yeast growth and fermentation

, , &
Pages 309-319 | Received 17 Feb 2017, Accepted 30 Jun 2017, Published online: 17 Aug 2017

References

  • Edelstein S, Smith K, Worthington A, et al. Comparison of six new artificial sweetener gradation ratios with sucrose in conventional‐ method cupcakes resulting in best percentage substitution ratios. J Cul Sci Technol. 2008;5:61–74.
  • Maguire A, Rugg-Gun AJ. Xylitol and caries prevention–is it a magic bullet? Br Dent J. 2003;194:429–436.
  • Khalid E, Johan S, Helén J, et al. Calorimetric and relaxation properties of xylitol-water mixtures. J Chem Phys. 2012;136:104508.
  • Islam MS. Effects of xylitol as a sugar substitute on diabetes related parameters in non-diabetic rats. J Med Food. 2011;14:505–511.
  • Mussatto SI, Roberto IC. Xylitol: a sweetner with benefits for human health. Braz J Pharm Sci. 2002;38:401–413.
  • Chen X, Jiang ZH, Chen S, et al. Microbial and bioconversion production of d-xylitol and its detection and application. Int J Biol Sci. 2010;6:834–844.
  • Su M, Wu JL, Yang L. Metabolic engineering strategies for improved xylitol production from hemicellulosic sugars. Biotechnol Lett. 2013;35:1781–1789.
  • Li M, Meng X, Diao E, et al. Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J Chem Technol Biotechnol. 2012;87:387–392.
  • Camargo D, Sene L, Variz DILS, et al. Xylitol bioproduction in hemicellulosic hydrolysate obtained from Sorghum forage biomass. Appl Biochem Biotechnol. 2015;175:3628–3642.
  • Rodrigues RC, Kenealy WR, Jeffries TW. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J Ind Microb Biotechnol. 2011;38:1649–1655.
  • Da Silva DDV, de Arruda PV, Vicente FMCF, et al. Evaluation of fermentative potential of Kluyveromyces marxianus ATCC 36907 in cellulosic and hemicellulosic sugarcane bagasse hydrolysates on xylitol and ethanol production. Ann Microbiol. 2014;65:687–694.
  • Mussatto SI, Dragone G, Roberto IC. Kinetic behavior of Candida guilliermondii yeast during xylitol production from brewer's spent grain hemicellulosic hydrolysate. Biotechnol Prog. 2005;21:1352–1356.
  • Tamburini E, Costa S, Marchetti MG, et al. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis. Biomolecules. 2015;5:1979–1989.
  • El Baz AF, Shetaia YM, Elkhouli RR. Kinetic behavior of Candida tropicalis during xylitol production using semi-synthetic and hydrolysate based media. Afr J Biotechnol. 2011;10:16617–16625.
  • Mussatto SI, Roberto IC. Kinetic behavior of Candida guilliermondii yeast during xylitol production from highly concentrated hydrolysate. Process Biochem. 2004;39:1433–1439.
  • Roberto I, Mancilha IM, Sato S. Kinetics of xylitol fermentation by Candida guilliermondii grown on rice straw hemicellulosic hydrolysate. Appl Biochem Biotechnol. 1999;77:205–210.
  • Jeon YJ, Shin HS, Rogers PL. Xylitol production from a mutant strain of Candida tropicalis. Lett Appl Microbiol. 2011;53:106–113.
  • Walther T, Hensirisak P, Agblevor FA. The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour Technol. 2001;76:213–220.
  • Sampaio FC, Mantovani HC, Passos FJV, et al. Bioconversion of D-xylose to xylitol by Debaromyces hansenii UFV-170: product formation vs. growth. Process Biochem. 2005;40:3600–3606.
  • Dasgupta D, Ghosh D, Bandhu S, et al. Purification, characterization and molecular docking study of NADPH dependent xylose reductase from thermotolerant Kluyveromyces sp.IIPE453. Proc Biochem. 2016;51:124–133.
  • Dasgupta D, Suman SK, Pandey D, et al. Design and optimization of ethanol production from bagasse pith hydrolysate by a thermotolerant yeast Kluyveromyces sp. IIPE453 using response surface methodology. SpringerPlus. 2013;2:159W22; 168.
  • Monod J. The growth of bacterial cultures. Ann Rev Microbiol. 1949;8:371–374.
  • Kingsland SE. Modeling nature. Chicago (IL, USA): The University of Chicago Press; 2002.
  • Michaelis L, Menten ML. Kinetik der Invertinwirkung. Biochem Zeitung. 1913;49:333–369.
  • Schuler ML, Kargi F. Bioprocess engineering: Basic concepts. 2nd ed. Prentice Hall; 1992.
  • Luedeking R, Piret EL. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J Biochem Microbiol Technol Eng. 1959;4:393–412.
  • Andrews JF. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrate. Biotechnol Bioeng. 1968;10:707–723.
  • Aiba S, Shoda M, Nagatani M. Kinetics of product inhibition in alcohol fermentation. Biotechnol Bioeng. 1968;10:845–864.
  • Haldane JBS. Enzymes. Cambridge (Massachusetts): The MIT Press; 1965.
  • Luong JHT. Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnol Bioeng. 1987;29:242–248.
  • Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass. Golden (CO): National Renewable Energy Laboratory; 2011. (Laboratory Analytical Procedure (LAP) No. NREL/TP-510-42618).
  • Ghosh D, Dasgupta D, Agrawal D, et al. Fuels and chemicals from lignocellulosic biomass: an integrated biorefinery approach. Energ Fuels. 2015;29:3149–3157.
  • Lasdon LS, Waren AD, Jain A, et al. Design and testing of a generalized reduced gradient code for nonlinear optimization. Technical Memorandum No. 353; 1975.
  • Weisstein EW. Least squares fitting. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/LeastSquaresFitting.html.
  • McDonald JH. Handbook of biological statistics. 3rd ed. Baltimore (Maryland): Sparky House Publishing; 2014.
  • Magnussen S, McRoberts RE, Tomppo EO. Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories. Remote Sensing Env. 2009;113:476–488.
  • Lee TZE, Krongchai C, Lu NALMI, et al. Application of central composite design for optimization of the removal of humic substances using coconut copra. Int J Ind Chem. 2015;6:185–191.
  • Dasgupta D, Ghosh D, Bandhu S, et al. Lignocellulosic sugar management for xylitol and ethanol fermentation with multiple cell recycling by Kluyveromyces marxianus IIPE453. Microbiol Res. 2017;200:64–72.
  • Dasgupta D, Ghosh P, Ghosh D, et al. Ethanol fermentation from molasses at high temperature by thermotolerant yeast Kluyveromyces sp. IIPE453 and energy assessment for recovery. Bioprocess Biosyst Eng. 2014;37:2019W22;2029.
  • Knoshaug EP, Vidgren V, Magalhães F, et al. Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose. Yeast. 2015;32:615–628.
  • Li M, Meng X, Diao E, et al. Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J Chem Technol Biotechnol. 2012;87:387–392.
  • Mohammad NL, Kamal SMM, Mokhtar MN, et al. Dynamic mathematic modelling of reaction kinetics for xylitol fermentation using Candida tropicalis. Biochem Eng J. 2016;111:10–17.
  • Barradas JSA, Delia ML, Riba JP. Kinetic study and modelling of the xylitol production using Candida parapsilosis in oxygen-limited culture conditions. Bioprocess Eng. 2000;22:219–225.
  • Signori L, Passolunghi S, Ruohonen L, et al. Effect of oxygenation and temperature on glucose-xylose fermentation in Kluyveromyces marxianus CBS712 strain. Microb Cell Fact. 2014;13:51–63.
  • Jeon WY, Yoon BH, Ko BS, et al. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess BiosystEng. 2012;35:191–198.
  • Zhang C, Zong H, Zhuge B, et al. Production of Xylitol from D-Xylose by overexpression of xylose reductase in osmotolerant yeast Candida glycerinogenes WL2002-5. Appl Biochem Biotechnol. 2015;176:1511–1527.
  • Kwon DH, Kim MD, Lee TH, et al. Elevation of glucose 6 phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisae. J Mol Catal B-Enzym. 2006;43:86–89.
  • Da Silva DDV, de Arruda PV, Vicente FMCF, et al. Evaluation of fermentative potential of Kluyveromyces marxianus ATCC 36907 in cellulosic and hemicellulosic sugarcane bagasse hydrolysates on xylitol and ethanol production. Microbiol. 2015;2:687–694.
  • Kim JS, Park JB, Jang SW, et al. Enhanced xylitol production by mutant Kluyveromyces marxianus 36907-FMEL1 due to improved xylose reductase activity. Appl Biochem Biotechnol. 2015;176:1975–1984.
  • de Albuquerque TL, Gomes SDL, Marques Jr JE, et al. Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Cat Tod. 2015;255:33–40.
  • Mateo S, Puentes JG, Moya AJ, et al. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618. Bioresour Technol. 2015;190:1–6.
  • Cheng KK, Wu J, Lin ZN, et al. Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnol Biofuel. 2014;7:166–184.
  • Tochampa W, Sirisansaneeyakul S, Vanichsriratana W, et al. A model of xylitol production by the yeast Candida mogii. Bioprocess Biosyst Eng. 2005;28:175–183.
  • Miles JRS, Adjusted RS. Wiley stats ref: Statistics reference online (p 1-3). John Wiley & Sons. Ltd. 2014. DOI:10.1002/9781118445112.stat06627.
  • Sharma NK, Behera S, Arora R, et al. Enhancement in xylose utilization using Kluyveromyces marxianus NIRE-K1 through evolutionary adaptation approach. Bioprocess Biosyst Eng. 2016;39:835–843.
  • Rocha MVP, Rodrigues THS, Melo VMM, et al. Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025. J Ind Microb Biotechnol. 2011;38:1099–1107.
  • Wannawilai S, Sirisansaneeyakul S. Economical production of xylitol from Candida magnoliae TISTR 5663 using sugarcane bagasse Hydrolysate. Kasetsart J (Nat Sci). 2015;49:583–596.
  • Roberto IC, de Mancilha IM, Sato S. Kinetics of Xylitol Fermentation by Candida guilliermondii grown on rice straw hemicellulosic hydrolysate. Appl Biochem Biotechnol. 1999;77–79:205–210.
  • Nobre A, Lucas C, Lea˘o C. Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Appl Environ Microbiol. 1999;65:3594–3598.
  • Stambuk BU, Franden MA, Singh A, et al. D-Xylose Transport by Candida succiphila and Kluyveromyces marxianus. Appl Biochem Biotechnol. 2003;105–108:255–263.
  • Young E, Poucher A, Comer A, et al. Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl Env Microbiol. 2011;77:3311–3319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.