2,773
Views
30
CrossRef citations to date
0
Altmetric
Articles

Investigation of different pretreatment methods of Mediterranean-type ecosystem agricultural residues: characterisation of pretreatment products, high-solids enzymatic hydrolysis and bioethanol production

ORCID Icon, , , &
Pages 545-558 | Received 07 Mar 2017, Accepted 02 Sep 2017, Published online: 27 Sep 2017

References

  • Bentsen NS, Felby C, Thorsen BJ. Agricultural residue production and potentials for energy and materials services. Prog Energy Combust Sci. 2014;40(1):59–73.
  • Hadar Y. Sources for lignocellulosic raw materials for the production of ethanol. In: Faraco V. (eds) Lignocellulose conversion. Springer, Berlin, Heidelberg 2013. pp. 21–38.
  • Faraco V, Hadar Y. The potential of lignocellulosic ethanol production in the Mediterranean Basin. Renew Sust Energy Rev. 2011;15(1):252–266.
  • Díaz MJ, Huijgen WJJ, Van Der Laan RR, et al. Organosolv pretreatment of olive tree biomass for fermentable sugars. Holzforschung. 2011;65(2):177–183.
  • Ballesteros I, Ballesteros M, Cara C, et al. Effect of water extraction on sugars recovery from steam exploded olive tree pruning. Bioresource Technol. 2011;102(11):6611–6616.
  • Cara C, Ruiz E, Carvalheiro F, et al. Production, purification and characterisation of oligosaccharides from olive tree pruning autohydrolysis. Ind Crop Prod. 2012;40:225–231.
  • Lama-Muñoz A, Romero-García JM, Cara C, et al. Low energy-demanding recovery of antioxidants and sugars from olive stones as preliminary steps in the biorefinery context. Ind Crop Prod. 2014;60:30–38.
  • Conde E, Cara C, Moure A, et al. Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chem. 2009;114(3):806–812.
  • Cara C, Ruiz E, Ballesteros M, et al. Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel. 2008;87(6):692–700.
  • Manzanares P, Negro MJ, Oliva JM, et al. Different process configurations for bioethanol production from pretreated olive pruning biomass. J Chem Technol Biotechnol. 2011;86(6):881–887.
  • Cotana F, Barbanera M, Foschini D, et al. Preliminary optimization of Alkaline pretreatment for ethanol production from vineyard pruning. Energy Procedia. 2015;82:389–394.
  • Buratti C, Barbanera M, Lascaro E. Ethanol production from vineyard pruning residues with steam explosion pretreatment. Environ Prog Sustainable Energy. 2015;34(3):802–809.
  • Martinez JM, Granado JM, Montane D, et al. Fractionation of residual lignocellulosics by dilute-acid prehydrolysis and alkaline extraction: Application to almond shells. Bioresource Technol. 1995;52(1):59–67.
  • Martínez JM, Reguant J, Montero MÁ, et al. Hydrolytic pretreatment of softwood and almond shells. Degree of polymerization and enzymatic digestibility of the cellulose fraction. Ind Eng Chem Res. 1997;36(3):688–696.
  • Nieto-Romero M, Oteros-Rozas E, González JA, et al. Exploring the knowledge landscape of ecosystem services assessments in Mediterranean agroecosystems: Insights for future research. Environ Sci Policy.2014;37:121–133.
  • Faraco V, Hadar Y. The potential of lignocellulosic ethanol production in the Mediterranean Basin. Renew Sustainable Energy Rev. 2011;15(1):252–266.
  • Spinelli R, Nati C, Pari L, et al. Production and quality of biomass fuels from mechanized collection and processing of vineyard pruning residues. Appl Energy. 2012;89(1):374–379.
  • Lapuerta M, Hernández JJ, Pazo A, et al. Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions. Fuel Process Technol. 2008;89(9):828–837.
  • International Nut and Dried Fruit Council Foundation (INC). Nuts & dried fruits global statistical review 2015/2016.
  • Fadel JG. Quantitative analyses of selected plant by-product feedstuffs, a global perspective. Anim Feed Sci Technol. 1999;79(4):255–268.
  • Licari A, Monlau F, Solhy A, et al. Comparison of various milling modes combined to the enzymatic hydrolysis of lignocellulosic biomass for bioenergy production: Glucose yield and energy efficiency. Energy. 2016;102:335–342.
  • Mathew AK, Parameshwaran B, Sukumaran RK, et al. An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. Bioresource Technol. 2016;199:13–20.
  • Nitsos CK, Matis KA, Triantafyllidis KS. Optimization of hydrothermal pretreatment of Lignocellulosic biomass in the bioethanol production process. ChemSusChem. 2013;6(1):110–122.
  • Chen H, Zhao J, Hu T, et al. A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: Substrate digestibility, fermentability and structural features. Appl Energy. 2015;150:224–232.
  • Sharma A, Ghosh A, Pandey RA, et al. Wet air oxidation pretreatment of mixed lignocellulosic biomass to enhance enzymatic convertibility. Korean Chem Eng Res. 2015;53(2):216–223.
  • Capecchi L, Galbe M, Barbanti L, et al. Combined ethanol and methane production using steam pretreated sugarcane bagasse. Ind Crop Prod. 2015;74:255–262.
  • Dale BE, Leong CK, Pham TK, et al. Hydrolysis of lignocellulosics at low enzyme levels: Application of the AFEX process. Bioresource Technol. 1996;56(1):111–116.
  • Cara C, Romero I, Oliva JM, et al. Liquid hot water pretreatment of olive tree pruning residues. Appl Biochem Biotechnol. 2007;137–140(1–12):379–394.
  • Díaz-Villanueva MJ, Cara-Corpas C, Ruiz-Ramos E, et al. Olive tree pruning as an agricultural residue for ethanol production. Fermentation of hydrolysates from dilute acid pretreatment. Span J Agric Res. 2012;10(3):643–648.
  • Negro MJ, Alvarez C, Ballesteros I, et al. Ethanol production from glucose and xylose obtained from steam exploded water-extracted olive tree pruning using phosphoric acid as catalyst. Bioresource Technol. 2014;153:101–107.
  • Díaz Manuel J, Huijgen Wouter JJ, van der Laan Ron R, et al. Organosolv pretreatment of olive tree biomass for fermentable sugars. Holzforschung. 2011;65(2):177–183.
  • Garrote G, Dominguez H, Parajo JC. Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff. 1999;57:191–202.
  • Kang Y, Bansal P, Realff MJ, et al. SO2-catalyzed steam explosion: The effects of different severity on digestibility, accessibility, and crystallinity of lignocellulosic biomass. Biotechnol Progress. 2013;29(4):909–916.
  • Larsen J, Atergaard Petersen M, Thirup L, et al. The IBUS process - Lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol. 2008;31(5):765–772.
  • Thomsen MH, Thygesen A, Thomsen AB. Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Bioresource Technol. 2008;99(10):4221–4228.
  • Tomás-Pejó E, Oliva JM, Ballesteros M, et al. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng. 2008;100(6):1122–1131.
  • Cannella D, Jørgensen H. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production ? Biotechnol Bioeng. 2014;111(1):59–68.
  • Paschos T, Xiros C, Christakopoulos P. Simultaneous saccharification and fermentation by co-cultures of Fusarium oxysporum and Saccharomyces cerevisiae enhances ethanol production from liquefied wheat straw at high solid content. Ind Crop Prod. 2015;76:793–802.
  • Sluiter A, Hames B, Rui R , et al. Determination of structural carbohydrates and lignin in biomass. Technical report NREL/TP-510-42618, Laboratory analytical procedure. Golden CO: National Renewable Energy Laboratory, 2012.
  • Pielhop T, Amgarten J, von Rohr PR, et al. Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels. 2016;9(1):152.
  • Nitsos CK, Choli-Papadopoulou T, Matis KA, et al. Optimization of hydrothermal pretreatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis. ACS Sustainable Chem Eng. 2016; 4(9):4529–4544. ( submited for publication) .
  • Torget R, Himmel ME, Grohmann K. Dilute sulfuric acid pretreatment of hardwood bark. Bioresource Technol. 1991;35(3):239–246.
  • Rowe JW, Conner AH. Extractives in eastern hardwoods: a review. General technical report FPL 18, Forest products laboratory. U.S. Department of Agriculture, Forest service, Madison, Wisconsin. 1979.
  • Moretti MMdS, Bocchini-Martins DA, Nunes CdCC, et al. Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Appl Energy.2014;122:189–195.
  • Kang S, Xiao L, Meng L, et al. Isolation and structural characterization of lignin from cotton stalk treated in an ammonia hydrothermal system. Int J Mol Sci. 2012;13(11):15209–15226.
  • Spinacé MAS, Lambert CS, Fermoselli KKG, et al. Characterization of lignocellulosic curaua fibres. Carbohyd Polym. 2009;77(1):47–53.
  • Ballesteros I, Negro MJ, Oliva JM, et al. Ethanol production from steam-explosion pretreated wheat straw. In: McMillan JD, Adney WS, Mielenz JR, Klasson KT, editors. Twenty-seventh symposium on biotechnology for fuels and chemicals. Totowa (NJ): Humana Press; 2006. p. 496–508.
  • Matsakas L, Christakopoulos P. Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content. Bioresource Technol. 2013;127:202–208.
  • Karnaouri A, Paschos T, Taouki I, et al. Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophila. PeerJ. 2013;1:e46.
  • Manzanares P, Negro MJ, Oliva JM, et al. Different process configurations for bioethanol production from pretreated olive pruning biomass. J Chem Technol Biotechnol. 2011;86(6):881–887.
  • Börjesson J, Engqvist M, Sipos B, et al. Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose. Enzyme and Microb Technol. 2007;41(1–2):186–195.
  • Excoffier G, Toussaint B, Vignon MR. Saccharification of steam-exploded poplar wood. Biotechnol Bioeng. 1991;38(11):1308–1317.