539
Views
40
CrossRef citations to date
0
Altmetric
Articles

Prospects for pretreatment methods of lignocellulosic waste biomass for biogas enhancement: opportunities and challenges

, , &
Pages 575-594 | Received 30 May 2017, Accepted 21 Aug 2017, Published online: 11 Oct 2017

References

  • Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotech. 2013;56:17–34.
  • Pérez J, Muñoz-Dorado J, De La Rubia T, et al. Biodegradation and biological treatments of cellulose, hemicellulose, and lignin: an overview. Int Microbiol. 2002;5:53–63.
  • Krátký L, Jirout T, Nalezenec J. Lab-scale technol for biogas production from lignocellulose wastes. Acta Polytechnica. 2012;52:54–59.
  • Jitendra KS, Reetu S, Lakshmi T. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 2015;5:337–353.
  • Sims R. Biomass and resources bioenergy options for a cleaner environment in developed and developing countries. London, UK: Elsevier Sci; 2003.
  • Delmer DP, Amor Y. review cellulose biosynthesis. Plant cell. 1995;7(7):987–1000.
  • Morohoshi N. Chemical characterization of wood and its components. In: Hon DNS, Shiraishi N, editors Wood and cellulosic chemistry. New York, USA: Marcel Dekker, Inc; 1991. p. 31–392.
  • Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production. A review. Int J Mol Sci. 2008;9:1621–1651.
  • Talebnia F, Bafrani MP, Lundin M, et al. Optimization study of citrus wastes saccharification by dilute acid hydrolysis. Bioresour Technol. 2008;3:108–122.
  • Dekar M. Challenges of ethanol production form lignocellulosic biomass. Cincinnati, Ohio: Katzen Int inc Technol and Engenering.
  • Palonen H, Thomsen AB, Tenkanen M, et al. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl Biochem Biotechnol. 2004;117:1–17.
  • Grethlein HE. The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulose substrates. Bioresour Technol. 1985;3:155–160.
  • Laureano-Perez L, Teymouri F, Alizadeh H, et al. Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol. 2005;121-124:1081–1099.
  • Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 2009;100:10–18.
  • Gregg D, Saddler JN. A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl Biochem Biotechnol. 1996;57-58(1):711–727.
  • Mc Millan JD. Pretreatment of lignocellulosic biomass. In Himmel ME, Baker JO, Over ends RP, Editors. Enzymatic conversion of biomass for fuels production. Washington,DC: American Chemical Society; 1994. p. 292–324.
  • Kumar P, Barrett DM, Delwiche MJ, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Engg Chem Res. 2009;48:3713–3729.
  • Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96(6):673–686.
  • Palmqvist E., Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification: Review. Bioresour Technol. 2000;74:17–24.
  • Palmqvist E. Hahn-Hagerdal fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanism of inhibition: Review. Bioresour Technol. 2000;74:25–33.
  • Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83:1–11.
  • Chiaramonti D, Prussi M, Ferreroc S, et al. Review of pretreatment processes for lignocellulosic ethanol production and development of an innovative method. Biomass Bioenerg. 2012;46:25–35.
  • Hashimoto AG. Pretreatment of wheat straw for fermentation to methane. Biotechnol Bioeng. 1986;28(12):1857–1866.
  • Sharma SK, Saini JS, Mishra IM, et al. Biogasification of woody biomass: Ipomoea fistulosa plant stem. Biolog Wast. 1989;28:25–32.
  • Fox MH, Noike T, Ohki T. Alkaline subcritical-water treatment and alkaline heat treatment for the increase in biodegradability of newsprint waste. Water Sci Technol. 2003;48(4):77–84.
  • Frigon J-C, Guiot SR. Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels Bioprod Bioref. 2010;4(4):447–458.
  • Rivers DB, Emert GH. Factors affecting the enzymatic hydrolysis of municipal-solid-waste components. Biotechnol Bioeng. 1988;31(3):278–81.
  • Anderson WF, Akin D E. Structural and chemical properties of grass lignocelluloses related to conversion for biofuel. J Ind Microbiol Biotechnol. 2008;35:355–366.
  • Zhu O'Dwyer JP, Chang VS, Granda CB, et al. Structural feature affecting biomass enzymatic digestibility. Bioresour Technol. 2008;99:3817–3828.
  • Menardo S, Airoldi G, Balsari P. The effect of particle size and thermal pretreatment onthe methane yield of four agricultural by-products. Bioresour Technol. 2012;104:708–714.
  • Sharma SK, Mishra IM, Sharma MP, et al. Effect of particle-size on biogas generation from biomass residues. Biomass. 1988;17(4):251–263.
  • Mshandete A, Björnsson L, Kivaisi AK et al. Effect of particle size on biogas yield from sisal fibre waste. Ren Eng. 2006;31(14):2385–2392.
  • Bruni E, Jensen AP, Angelidaki I. Comparative study of mechanical, hydrothermal chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol. 2010;101:8713–8717.
  • Ficara E, Malpei F. Maize mono-digestion efficiency: results from laboratory tests. Water Sci Technol. 2011;64(10):2029–2037.
  • Dumas C, Ghizzi Damasceno-da-Silva G, Rouau X, et al. Wheat straw milling effect on biogas production. Proceeding of 12th World Congress on Anaerobic Digestion. Guadalajara and Jalisco-Mexico. 2010.
  • González-Fernández C, León-Cofreces C, García-Encina PA. Different pretreatments for increasing the anaerobic biodegradability in swine manure. Bioresour Technol. 2008;99:8710–8714.
  • Take, H, Andou Y, Nakamura Y, et al. Production of methane gas from Japanese cedar chips pretreated by various delignification methods. J Biochem Engg. 2006;28(1):30–35.
  • Oliveira I, Gominho J, Diberardino S, et al. Characterization of Cynara cardunculus L. stalks and their suitability for biogas production. Ind Crops Prod. 2012;40(0):318–323.
  • Monlau F, Latrille E, Da Costa AC, et al. Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment. Appl Energy. 2012;102:1105–1113.
  • Palmowski L, Muller J. Influence of the size reduction of organic waste on their anaerobic digestion. II Int Symposium on Anaerobic Digestion of Solid Waste; Barcelona. 2004. p. 137–144.
  • Tahir M, Hedegaard M, Ejbye J. Bioresource technology hydrothermal pretreatment and enzymatic hydrolysis of mixed green and woody lignocellulosics from arid regions. Bioresour Technol. 2017;238:369–378.
  • Lei H, Cybulska I, Julson J. Hydrothermal pretreatment of lignocellulosic biomass and kinetics. J Sustain Bioenergy Syst. 2013;3:250–259.
  • Arturi KR, Strandgaard R, Nielsen P, et al. Hydrothermal liquefaction of lignin in near critical water in a new batch reactor: influence of phenol and temperature. J Supercritical Fluids. 2017;123:28–39.
  • Bobleter O. Hydrothermal degradation of polymers derived from plants. Prog Polymer Sci. 1994;19:797–841.
  • Teymouri F, Laureano-Perez L, Alizadeh H, et al. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol. 2005;96(18):2014–2018.
  • Chaturvedi V, Verma P. An overview of key pretreatment process employed for bioconversion of Lignocellulosic biomass into biofuels and value added product. 3 Biotech. 2013;3(5):415–431.
  • Kim TH, Kim JS, Sunwoo C, et al. Pretreatment of corn stover by aqueous ammonia. 2003;90:39–47.
  • Lehtomaki A, Viinikainen T, Ronkainen O, et al. Effects of pre-treatments on methane production potential of energy crops and crop residues. 10th IWA World Congress on Anaerobic Digestion. Montreal, Canada; 2004.
  • Zheng MX, Li XJ, Li LQ, et al. Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresour Technol. 2009;100(21):5140–5145.
  • Zhu L, O'Dwyer JP, Chang VS, et al. Multiple linear regression model for predicting biomass digestibility from structural features. Bioresour Technol. 2010;101(13):4971–4979.
  • Zheng M, Li X, Li L, et al. Enhancing solid-state anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresour Technol. 2009;101(19):7523–7528.
  • Ayla- Sant’ A, Ricardo DS, Sobral S, et al. Sugarcane and woody biomass pretreatments for ethanol production. Sustainable degradation of lignocellulosic biomass-Techniques, Appllications and Commercialization. 2013;47–88.
  • Badshah M, Lam DM, Liu J, et al. Use of an automatic methane potential test system for evaluating the biomethane potential of sugarcane bagasse after different treatments. Bioresour Technol. 2012;114:262–269.
  • Zheng Y, Lin H, Tsao GT. Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog. 1998;14(6):890–896.
  • Dongyan Y, Xiujin L, Zhijian G, et al. Improving biogas production of corn stalk through chemical and biological pretreatment: A preliminary comparison study. Transactions of the CSAE. 2003;19(5):209–213.
  • Chandra R, Takeuchi H, Hasegawa S. Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production. Appl Eng. 2012;94:129–140.
  • Zhang RH, Zhang ZQ. Biogasification of rice straw with an anaerobic-phased solids digester system. Bioresour Technol. 1999;68(3):235–245.
  • Xu J, Peng X, Bingfang H. Bioresource technology advances in improving the performance of cellulase in Ionic liquids for lignocellulose. Biorefinery. 2016;200:961–970.
  • Ramos LP. The chemistry involved in the steam treatment of lignocellulosic materials. Quím Nova. 2003;26:863–871.
  • Pang YZ, Liu YP, Li XJ, et al. Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment. Energy Fuels. 2008;22(4):2761–2766.
  • Lo Niee, Liew, BS. Solid- state anaerobic digestion of lignocellulosic biomass for biogas production. thesis. 2011.
  • Pakarinen OM, Kaparaju PLN, Rintala JA. Hydrogen and methane yields of untreated, water-extracted and acid (HCl) treated maize in one- and two-stage batch assays. Int J Hydro Eng. 2011;36(22):14401–14407.
  • Kivaisi AK, Eliapenda S. Pretreatment of bagasse and coconut fibers for enhanced anaerobic degradation by rumen microorganisms. Ren Eng. 1994;5(5–8):791–795.
  • Robinson T, Mohan M, Chilukoti B, et al. Goud, ‘Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study’. Biomass Bioener. 2015;81:9–18.
  • Xiao WP, Clarkson WW. Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 1997;8:61–66.
  • Fernandez-Cegri V, De La Rubia MA, Raposo F, et al. Impact of ultrasonic pretreatment under different operational conditions on the mesophilic anaerobic digestion of sunflower oil cake in batch mode. Ultrason Sonochem. 2012;19(5):1003–1010.
  • Pakarinen A. Evaluation of fresh and preserved herbaceous field crops for biogas and ethanol production. University of Helsinki, Faculty of Agriculture and Forestry Department of Agricultural Science. Phd Thesis. 2012.
  • Zhang Q, Tang Zhang J, Mao Z, et al. Optimization of thermal-dilute sulfuric acid pretreatment for enhancement of methane production from cassava residues. Bioresour Technol. 2011;102(4):3958–3965.
  • Kivaisi AK, Eliapenda S. Pretreatment of bagasse and coconut fibers for enhanced anaerobic degradation by rumen microorganisms. Renev Eng. 1994;5(5–8):791–795.
  • Thomas C, Town J, Iroba K, et al. Pretreatment of lignocellulosic biomass using microorganisms:applroaches, advantages and limitations. In: Chandel AK, Silvério da Silva S, editors. Sustainable degradation of lignocellulosic biomass - techniques, appllications and commercialization. Crotia: In Tech Publisher; 2013; p. 181–206.
  • Caixia Wan Y. Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv. 2012;30:1447–1457.
  • Narayan Swamy N, Dheeran P, Verma S, et al. Biological pretreatment of lignocellulosic biomass for enzymatic saccharification. In: Fang Z, editor. Pretreatment technique for biofuels and biorefineries. Berlin, Heidelberg: Green Energy Technol Speringer Verlag; 2013. p. 3–34.
  • Rouches E, Zhou S, Steyer JP, et al. White-rot fungi pretreatment of lignocellulosic biomass for anaerobic digestion: impact of glucose supplementation. Proc Biochem. 2015;5:11784–11792.
  • Chandel AK, Da Silva SS. Biochemistry genetics and molecular biology "sustainable degradation of lignocellulosic biomass techniques applications and commercialization. Crotia: In Tech Publisher; 2013.
  • Ray MJ, Leak DJ, Spanu PD, et al. Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass Bioeng. 2010;34(8):1257–1262.
  • Amirta R, Tanabe T, Watanabe T, et al. Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsissub vermispora. J Biotechnol. 2006;123:71–77.
  • Jasko J, Skripsts E, Dubrovskis V, et al. Anaerobic fermentation of biologically pretreated sawdust for energy appllications. Engg Rural Devlop. 2013;472–476.
  • Mackulak T, Prousek J, Svorc L. Drtil MIncrease of biogas production from pretreated hay and leaves using wood-rotting fungi. Chem Papers. 2012;66:649–653.
  • Muthangya M, Mshandete AM, Kivaisi AK. Two-stage fungal pre-treatment for improved biogas production from sisal leaf decortication residues. Int J Mol Sci. 2009;10:4805–4815.
  • Gupta P, Sahni N. Effect of Fusarium sp. on paddy straw digestibility and biogas production. J Adv Labo Res Biol. 20102;3(1):12–15.
  • Mackuľak T, Prousek T, Švorc L, et al. Increase of biogas production from pretreated hay and leaves using wood-rotting fungi. Chem Pap. 2012;66(7):649–653.
  • Ghosh A, Bhattacharyya BC. Biomethanation of white rotted and brown rotted rice straw. Biopro Engg. 1999;20(4):297–302.
  • Kumar P, Diane M. Barrett Michael J., et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Engg Chem Res. 2009;48(8):3713–3729.
  • Mamar SAS, Hadjadj A. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis. Rad Phy Chem. 1990;35:451–455.
  • De la Hoz A, Diaz-Ortiz A, Moreno A. Microwaves in organic synthesis thermal and non-thermal microwave effects. Chem Soc Rev. 2005;34:164–178.
  • Lee J, Parameswaran B, Lee JP, et al. Recent development of key technologies on cellulosic ethanol production. J Sci Res. 2008;67:865–887.
  • Verma AK, Jain PK. Key pretreatment technologies on cellulosic ethanol production. J Sci Res. 2011;55:57–63.
  • Kumakura M, Kaetsu I. Radiation degradation and the subsequent enzymatic hydrolysis of waste papers. Biotechnol Bioeng. 1982;24:991–997.
  • Kumakura M, Kojima T, Kaetsu I. Pretreatment of lignocellulosic wastes by combination of irradiation and mechanical crushing. Biomass 1982;2:299–308.
  • Ooshima H, Aso K, Harano YY, et al. Microwave treatment of cellulosic materials for their enzymatic-hydrolysis. Biotechnol Lett. 1984;6:289–294.
  • Wang F, Wang Y, Ji M. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration. J Hazard Mat. 2005;123:145–150.
  • Li L, Kong X, Yang F, et al. Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass. Appl Biochem Biotechnol. 2012;166(5):1183–1191.
  • Wang L. Different pretreatments to enhance biogas production. Master Thesis, Halmstad University; 2011.
  • Take H, Andou Y, Nakamura Y, et al. Production of methane gas from Japanese cedar chips pretreated by various delignification methods. Biochem Engg J. 2006;28(1):30–35.
  • Kobayashi F, Take H, Asada C, et al. Methane production from steam-exploded bamboo. J BioSci Bioeng. 2004;97(6):426–428.
  • Bauer A, Bosch P, Fried A, et al. Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. J Biotechnol. 2009;142(1):50–55.
  • Teghammar A. Biogas production from lignocelluloses: pretreatment substrate characterization co-digestion and economic evaluation. Gotberg University of Technology; 2013.
  • Hu Z, Wang Y, Wen Z. Alkali (NaOH) pretreatment of switchgrass by radio frequency-based dielectric heating. Appl Biochem Biotechnol. 2008;148(1–3):71–81.
  • Theuretzbacher F, Bauer A, Amon B, et al. Biogas production using strong lignified hay – optimization of the steam explosion pretreatment. International Conference of Agricultural Engg. Valencia: 2012.
  • Itoh H, Wada M, Honda Y, et al. Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol. 2003;103(3):273–280.
  • Dohanyos M, Zabranska J, Jenicek P. Innovative technol for the improvement of the anaerobic methane fermentation. Water Sci Technol. 1997;36:333–340.
  • Mason WH. Process and Apparatus for disintegration of wood and the like. US Patent: 1578609; 1926.
  • Varga E, Reczey K, Zacchi G. Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Appl Biochem Biotechnol. 2004;113:509–523.
  • Lizasoain J, Mar R, Franz T, et al. Biogas production from reed biomass: effect of pretreatment using different steam explosion conditions. Biomass Bioener. 2016;95:84–91.
  • Mok WSL, Antal MJA. Un catalyzed solovolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Engg Chem Res. 1992;31:1157–1161.
  • Bobleter O, Bonn G, Prutsch W. Steam explosion hydrothermolysis organosolv. A comparison) steam explosion technique. PA: Gorden and Breach; 1991. p. 59–82.
  • Duff SJB, Murray WD. Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresour Technol. 1996;55:133.
  • Lam PS. Steam explosion of biomass to produce durable pellets. PhD thesis, Vancouver, Canada: University of British Columbia; 2011.
  • Horn SJ, Estevez MM, Nielsen HK, et al. Biogas production and saccharification of Salix pretreated at different steam explosion conditions. Bioresour Technol. 2011;102(17):7932–7936.
  • Jackowiak, D, Frigon JC, Ribeiro T, et al. Enhancing solubilization and methane production kinetic of switchgrass by microwave pretreatment. Bioresour Technol. 2010;102(3):3535–3540.
  • Agbor VB, Cicek N, Sparling R, et al. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011;29(6):675–685.
  • Lynam JG, Toufiq Reza M, Vasquez VR, et al. Pretreatment of rice hulls by ionic liquid dissolution. Bioresour Technol. 2012;114:629–636.
  • Zhao H, Jones CL, Baker GA, et al. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol. 2009;139:47–54.
  • Li C, Wang Q, Zhao ZK. Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem. 2008;10:177–182.
  • Kilpeläinen I, Xie H, King A, et al. Dissolution of wood in ionic liquids. J Agric Food Chem. 2007;55:9142–9148.
  • Lan W, Liu CF, Sun RC. Fractionation of bagasse into cellulose, hemicelluloses and lignin with ionic liquid treatment followed by alkaline extraction. J Agric Food Chem. 2011;59:8691–8701.
  • Erdmenger T, Haensch C, Hoogenboom R, et al. Homogeneous tritylation of cellulose in 1-Butyl-3-methylimidazolium chloride. Macromol Biosci. 2007;7:440–445.
  • Fort DA, Remsing RC, Swatloski RP, et al. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazoliumchloride. Green Chem. 2007;9:63–69.
  • Swatloski RP, Spear SK, Holbrey JD, et al. Dissolution of cellose with ionic liquids. J Am Chem Soc. 2002;124:4974–4975.
  • Li W, Sun N, Stoner B, et al. Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem. 2011;13:2038–2047.
  • Fu D, Mazza G, Tamaki Y. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agri Food Chem. 2010;58:2915–2922.
  • Sun N, Rahman M, Qin Y, et al. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 2009;11:646–655.
  • Vo HT, Kim CS, Ahn BS, et al. Study on dissolution and regeneration of poplar wood in imidazolium-based ionic liquids. J Wood Chem Technol. 2011;31:89–102.
  • Weerachanchai P, Leong SSJ, Chang MW, et al. Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour Technol. 2012;111:453–459.
  • Hou XD, Smith TJ, Li N, et al. Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol and Bioeng. 2012;109:2484–2493.
  • Dale BE, Moreira MJA. freeze-explosion technique for increasing cellulose hydrolysis. Biotechnol Bioengg Symposium. 1982;12:31–43.
  • Puri VP, Mamers H. Explosive pretreatment of lignocellulosic residues with high pressure carbon dioxide for the production of fermentation substrates. Biotechnol Bioeng. 1983;25:3149–3161.
  • Liu L, Sun J, Li M, et al. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol. 2009;100(23):5853–5858.
  • Fernandes TV, Bos GJK, Zeeman G, et al. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Bioresour Technol. 2009;100(9):2575–2579.
  • Michalska K, Miazek K, Krzystek L, et al. Influence of pretreatment with Fenton's reagent on biogas production and methane yield from lignocellulosic biomass. Bioresour Technol. 2012;119:72–78.
  • Sonakya V, Raizada N, Kalia VC. Microbial and enzymatic improvement of anaerobic digestion of waste biomass. Biotechnol Lett. 2001;23(18):1463–1466.
  • Panagiotou G, Olsson L. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng. 2007;96(2):250–258.
  • Jorgensen H, Kristensen JB. (Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuel Bioprod Bioref. 2007;1(2):119–134.
  • Uellendahl H, Wang G, Moller HB, et al. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation. Water Sci Technol. 2008;58(9):1841–1847.
  • Dadi AP, Schall CA, Varanasi S. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol. 2007;137:407–421.
  • Schmidt AS, Thomsen AB. Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol. 1998;64(2):139–151.
  • Petersson A, Thomsen MH, Hauggaard-Nielsen H, et al. Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioeng. 2007;31(11–12):812–819.
  • Attar, Y, Mhetre ST, Shawale MD. Biogas production enhancement by cellulytic strains of Actinomycetes. Biogas Forum I. 1998;72:11–15.
  • Yan L, Gao Y, Wang Quan Liu, et al. Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production. Bioresour Technol. 2012;8(111):49–54.
  • Weerachanchai P, Leong SSJ, Chang MW, et al. Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour Technol. 2012;111:453–459.
  • Zhong W, Zhang Z, Luo Y, et al. Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour Technol. 2011;102(24):11177–11182.
  • Lukasz D, Adam P, Krzysztof R, et al. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities. Front Microbio. 2015; 6:1–12.
  • Tuesorn S, Wongwilaiwalin S, Champreda V, et al. Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium, Bioresour Technol. 2013;144:579–586.
  • Qinghua Z, Jiang H, Min T, et al. Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium, Bioresour Technol. 2011;102(19):8899–8906.
  • Yuan X, Cao Y, Li J, et al. Effect of pretreatment by a microbial consortium on methane production of waste paper and cardboard. Bioresour Technol. 2012;118:281–288.
  • Meher KK, Murthy MVS, Gollakota KG. Psychrophilic anaerobic digestion of human waste. Bioresour Technol. 1994;50(2):103–106.
  • Lu Y, Lai Q, Zhang C, et al. Characteristics of hydrogen and methane production from corn stalks by an augmented two- or three-stage anaerobic fermentation process. Bioresour Technol. 1994;100:2889–2895.
  • Zhong W, Zhang Z, Luo Y, et al. 2011; Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour Technol. 2011;102:11177–11182.
  • Vervaeren H, Hostyn K, Ghekiere G, et al. Biological ensilage additives as pretreatment for maize to increase the biogas production. Renv Eng. 2010;35:2089–2093.
  • Tirumale S, Nand K. Influence of Anaerobic Cellulolytic bacterial consortia in the anaerobic digesters on biogas production. Biogas Forum III. 2010;58: 12–15.
  • Ramchandra. Advance in biodegradation and bioremediation of industrial waste. CRC Press Tylor and Fransis; 2015. p. 490.
  • Ali SS, Abd El-Fatah A, Jianzhong S. Effective bio-pretreatment of sawdust waste with a novel microbial consortium for enhanced biomethanation. Bioresour Technol. 2017;238:425–432.
  • Kumar G, Sivagurunathan P, Bao N, et al. Evaluation of different pretreatments on organic matter solubilization and hydrogen fermentation of mixed microalgae Consortia. Int J Hydrogen Ener. 2016;41:21628–21640.
  • Bai Y, Li W, Chen C, et al. Biological pretreatment of cotton stalks and domestication of inocula in biogas fermentation. Micro China. 2010;37(4):513–519.
  • Romano RT, Zhang RH, Teter S, et al. The effect of enzyme addition on anaerobic digestion of Jose Tall Wheat Grass. Bioresour Technol. 2009;100:4564–4571.
  • Gerhardt M, Pelenc V, Bäuml M. Appllication of hydrolytic enzymes in the agricultural bio gas production results from practical appllications in Germany. Biotechnol J. 2007;2:1481–1484.
  • Zieminski K, Romanowska I, Kowalska M. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag. 2012;32(6):1131–1137.
  • Frigon J-C, Guiot SR. Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels Bioprod Bioref. 2012;4(4):447–458.
  • Neureite M, Dos Santos JTP, Lopez CP, et al. Effect of silage preparation on methane yields from whole crop maize silages. Proceeding of the 4th International 89 Symp. on Anaerobic Digestion of Solid Waste. 2005 1. p. 109–115.
  • Yoo CG, Wang C, Yu C, et al. Enhancement of enzymatic hydrolysis and Klason Lignin removal of corn stover using photocatalyst-assisted ammonia pretreatment. Appl Biochem Biotechnol. 2012;169:1648–58.
  • Sreekanth KM, Sahu D. Effect of ironoxide nanoparticle in bio digestion of a portable food-waste digesterJOCPR 2015;7 (9):353–359.
  • Casals E, Barrena R, Gracia A, et al. Programmed iron oxide nanoparticle disintegration in anaerobic digesters boosts biogas production. Small. 2014;10(1–4):305–312.
  • Otero-Gonzoalez L, Field JA, Sierra-Alvarez R. Inhibition of anaerobic waste water treatment after long- term exposure to low level of CuO nanoparticle. Water Res. 2014;58:160–168.
  • Luna-Delrisco M, Orupold K, Dubourguier H-C. Particle size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J Hazard Mater. 2011;189(1–2):603–608.
  • Gonzalez-Estrella J, Sierra Alvarez R, Field JA. Toxicity assessment of inorganic nanoparticle to acetoclastic and hydrogenotrophic methnogenic activity in anaerobic granular sludge. J Hazard Mater. 2013;260:278–285.
  • Mu H, Zheng X, Chen Y, et al. Response of anaerobic granular sludge to a shock load of Zinc oxide nanoparticle during biological wastewater tretment. Environ Sci Techol. 2012;46(11):5997–6007.
  • Neureite M, Dos Santos JTP, Lopez CP, et al. Effect of silage preparation on methane yields from whole crop maize silages. Proc. 4th Int. 89Symp. on Anaerobic Digestion of Solid Waste. 2005.(1):109–115.
  • Otero-Gonzalez L, Field JA, Sierra-Alvarez R. Fate and long term inhibitory impact of ZnO nanoparticle during high-rate anaerobic wastewater treatment. J Environ Manage. 2014;135:110–117.
  • Duc NM. Effect of CeO2 and ZnO nanoparticle on anaerobic digestion and toxicity of digestion sludge. Thailand: Asian institute of Technol; Ms thesis; 2013.
  • Mu H, Chen Y, Xiao N. Effect of metal oxide Nanoparticle (TiO2, Al2O3,SiO2,and ZnO) on waste activated sludge anaerobic digestion. Bioresour Technol. 2011;2(22):10305–10311.
  • Gracia A, Delgado L, Tora Ja Casals E, et al. Effect of cerium dioxide, titaniumDioxide, silver and gold Nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hzard Mater. 2012;199–200:346–372.
  • Chen Y, Mu H, Zheng X. 2014; Chronic response of waste activated sludge fermentation to titanium dioxide nanoparticle. Chin J chem. Eng. 2014;22:1162–1167.
  • Ma J, Quan X, Si X, et al. Response of anaerobic granule and flocculent sludge to ceria nanoparticle and toxic mechanism. Bioresour Technol 2013;149:346–352.
  • Casals E, Barrena R, Gracia A, et al. Programmed iron oxide nanoparticle disintegration in anaerobic digesters boosts biogas production.. Small. 2014(1–4):305–312.
  • Su L, Shi X, Guo G, et al. Stabilization of sewage sludge in the presence Nanoscale zero valent iron (nZVI): Abetment of odour and improvement of biogas production. J Mat Cycle Waste Manag. 2013;15(4):461–468.
  • Xiu Z-M, Jin Z-H, Li T-L, et al. Effect of nanoscale iron particle on a mixed culture dechlorinating Trichloroethylene. Bioresour Technol. 2010;101(4):1141–1146.
  • Yang Y, Guo J, Hu Z. Impact of nonzero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water Res. 2013;47(17):6790–6800.
  • Yang Y, Xu M, Wall JD, et al. Nanosilver impact on Methanogenesis and biogas production from municipal solid waste. Waste Manag. 2012;l32(5):816–825.
  • Al-Ahmed A, Hiligsmann S, Delvigne F, et al. Effect of encapsulated nanoparticle on thermophilic anaerobic digestion. 19th National Symposium on Appl Biological Science. Gembloux: Belgium; 2014.
  • Lo HM, Chiu HY, Lo FC. Effect of micro-nano and non micro non MSWI ashes addition on MSW anaerobic digestion. Bioresour Technol. 2012;7(1):46.
  • Dong Y, Zheng Y, Zhang RH. Alkali pretreatment of rice straw for increasing the biodegradability. Reno: Nevada: American Society of Agricultural and Biological Engineers; ASABE paper number: 095685; 2009.
  • Alqaralleh RM. Effect of alkaline pretreatment on anaerobic digestion of organic fraction of municipal solid waste. University of Ottawa Master; Thesis. 2012.
  • Kumakura M, Kaetsu I. Radiation-induced decomposition and enzymatic hydrolysis of cellulose. Biotechnol Bioeng. 1978;(20):1309–1315.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.