611
Views
38
CrossRef citations to date
0
Altmetric
Articles

Biodiesel from oleaginous microbes: opportunities and challenges

, ORCID Icon, , , , & show all
Pages 45-59 | Received 06 Aug 2017, Accepted 15 Oct 2017, Published online: 08 Dec 2017

References

  • Ahuja D. Tatsutani M. Sustainable energy for developing countries. Sapiens. 2009;2.
  • OECD-FAO. Agricultural outlook 2016-2025. Paris: OECD Publishing; 2016.
  • Kannahi M, Arulmozhi R. Production of biodiesel from edible and non-edible oils using Rhizopus oryzae and Aspergillus niger. Asian J Plant Sci Res. 2013;3:60–64.
  • Mattos RA, Bastos FA, Tubino M. Correlation between the composition and flash point of diesel-biodiesel blends. J Braz Chem Soc. 2015;26:393–395.
  • Hazrat MA, Rasul MG, Khan MMK. Lubricity Improvement of the Ultra-Low Sulfur Diesel Fuel with the Biodiesel. Energy Procedia. 2015;75:111–117.
  • Gopinath A, Puhan S, Nagarajan G. Effect of biodiesel structural configuration on its ignition quality. Int J Energy Environ. 2010;2:295–306.
  • Meng X, Yang J, Xu X, et al. Biodiesel production from oleaginous microorganisms. Renew Energ. 2009;34(1):1–5.
  • Kumari A, Mahapatra P, Garlapati VK, et al. Enzymatic transesterification of Jatropha oil. Biotechnol Biofuels. 2009;2(1):1.
  • Garlapati VK, Kant R, Kumari A, et al. Lipase mediated transesterification of Simarouba glauca oil: a new feedstock for biodiesel production. Sus Che Proc. 2013;1(1):11.
  • Prokop T. Personal communication, imperial western products. Coachella: CA: 14970 Chandler St.; 2002. p. 91720.
  • Kumar SPJ, Banerjee R. Optimization of lipid enriched biomass production from oleaginous fungus using response surface methodology. Indian J Exp Biol. 2013;51:979–983.
  • Rossi M, Amaretti A, Raimondi S, et al. Getting lipids for biodiesel production from oleaginous fungi. In: Stoytcheva M, Montero G, editors. Biodiesel - feedstocks and processing technologies. Krautzeka, Croatia: InTech publishers; 2011.
  • Alvarez HM, Steinbuchel A. Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol. 2002;60(4):367–376.
  • Butinar L, Spencer-Martins I, Gunde-Cimerman N. Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. Antonie van Leeuwenhoek. 2007;91:277–289.
  • Deak T. Ecology and Biodiversity of Yeasts with potential value in Biotechnology. In: Satyanarayana T, Kunze G. (Eds.) In: Yeast biotechnology: diversity and applications. Netherlands: Springer Publications; 2010.
  • Beopoulos A, Cescut J, Haddouche R, et al. Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res. 2009;48(6):375–387.
  • Ageitos JM, Vallejo JA, Veiga-Crespo P, et al. Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol. 2011;90(4):1219–1227.
  • Polburee P, Yongmanitchai W, Lertwattanasakul N, et al. Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol. Fungal Biol. 2015;119(12):1194–1204.
  • Sitepu IR, Sestric R, Ignatia L, et al. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species. Bioresour Technol. 2013;144:360–369.
  • Sitepu I, Jin M, Fernandez J, et al. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover. Appl Microbiol Biotechnol. 2014;98:7645–7657.
  • Kleinzeller A. Fat formation in Torulopsis lipofera. Biochem J. 1944;38:479–492.
  • Eroshin V, Krylova N. Efficiency of lipid synthesis by yeasts. Biotechnol Bioeng. 1983;25(7):1693–1700.
  • Starkey R. Lipid production by a soil yeast. J Bacteriol. 1946;51:33–50.
  • Oguri E, Masaki K, Naganuma T, et al. Phylogenetic and biochemical characterization of the oil-producing yeast Lipomyces starkeyi. Antonie Van Leeuwenhoek. 2012;101:359–368.
  • Kitcha S, Cheirsilp B. Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. Energy Procedia. 2011;9:274–282.
  • Pan LX, Yang DF, Shao L, et al. Isolation of the oleaginous yeasts from the soil and studies of their lipid-producing capacities. Food Technol Biotech. 2009;47:215–220.
  • Stanier R. Some aspects of microbiological research in Germany. BIOS Final Report No 691, Item No 24, London: British Intelligence Objectives Sub-Committee; 1946.
  • Schmidt E. Eiweiß und Fettgewinnung über Hefe aus Sulfitablauge. Angew Chem. 1947;59:16–20.
  • Boulton C, Ratledge C. Use of transition studies in continuous cultures of Lipomyces starkeyi, an oleaginous yeast, to investigate the physiology of lipid accumulation. J Gen Microbiol. 1983;129:2871–2876.
  • Amaretti A, Raimondi S, Leonardi A, et al. Candida freyschussii: an oleaginous yeast producing lipids from glycerol. Chem Eng Trans. 2012;27:139–144.
  • Hopton J, Woodbine M. Fat synthesis by yeasts. I. A comparative assessment of Hansenula species. J Appl Bacteriol. 1960;23:283–290.
  • Guerzoni M, Lambertini P, Lercker G, et al. Technological potential of some starch degrading yeasts. Starch. 1985;37:52–57.
  • Malkhas'ian S, Nechaev A, Gavrilova N, et al. Group and fatty acid composition of the lipids in yeasts of the genus Candida. Prikl Biokhim Mikrobiol. 1982;18:621–629.
  • Duarte SH, Andrade CCP, Ghiselli G, et al. Exploration of Brazilian biodiversity and selection of a new oleaginous yeast strain cultivated in raw glycerol. Bioresour Technol. 2013;138:377–381.
  • Andreevskaya V, Zalashko M. Effect of addition of salts on growth and synthesis of lipid in yeasts cultured on peat oxidates. Prikladnaya Biokhimiya i Mikrobiologiya. 1979;15:522–552.
  • Zhelifonova V, Krylova N, Dedyukhina E, et al. Investigation on lipid-forming yeasts growing on a medium with ethanol. Mikrobiologiya. 1983;52:219–224.
  • Franklin S, Piechocki J, Norris L, Decker S, Wee J, Zdanis D. Oleaginous yeast food compositions. WO 2011130576 A1 2011.
  • Sentheshanmuganathan S, Nickerson W. Composition of cells and cell walls of triangular and ellipsoidal forms of Trigonopsis variabilis. J Gen Microbiol. 1962;27:451–464.
  • Bati N, Hammond E, Glatz B. Biomodification of fats and oils: trials with Candida lipolytica. J Am Oil Chem Soc. 1984;61:1743–1746.
  • Sitepu IR, Garay LA, Sestric R, et al. Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnol Adv. 2014;15:1336–1360.
  • Tatsumi C, Hashimoto Y, Masahiko T, Matsuo T. Method for producing cacao butter substitute. US 4032405 A 1977.
  • Sitepu I, Ignatia L, Franz A, et al. An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J Microbiol Methods. 2012;91:321–328.
  • Husain S, Hardin M. Influence of carbohydrate and nitrogen sources upon lipid production by certain yeasts. J Food Sci. 1952;17:60–66.
  • Amaretti A, Raimondi S, Sala M, et al. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Fact. 2010;9:73.
  • Rossi M, Buzzini P, Cordisco L, et al. Growth, Lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol. 2009;69(3):363–372.
  • Franklin S, Decker SM, Wee J. Fuel and chemical production from oleaginous yeast. US 20110252696 A1 2011.
  • Pedersen T. Lipid formation in Cryptococcus terricolus. I. Nitrogen nutrition and lipid formation. Acta Chem Scand. 1961;15:651–662.
  • Li S, Lin Q, Li X, et al. Biodiversity of the oleaginous microorganisms in Tibetan Plateau. Braz J Microbiol. 2012;43:627–634.
  • Hansson L, Dostalek M. Effect of culture conditions on fatty acid composition on lipids produced by the yeast Cryptococcus albidus var. albidus. J Am Oil Chem Soc. 1986;63:1179–1184.
  • Huang C, Chen XF, Xiong L, et al. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv. 2013;31:129–139.
  • Zheng Y, Yu X, Zeng J, et al. Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulphuric acid pretreatment of wheat straw. Biotechnol Biofuel. 2012;5:50.
  • Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur J Lipid Sci Techol. 2011;113(8):1031–1051.
  • Miguel T, Calo-Mata P, Diaz A, et al. The genus Rhodosporidium: a potential source of beta-carotene. Microbiologia. 1997;13(1):67–70.
  • Zhang J, Fang X, Zhu XL, et al. Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass Bioenergy. 2011;35(5):1906–1911.
  • Smit, MS. Fungal epoxide hydrolases: new landmarks in sequence-activity space. Trends Biotechnol. 2004;22(3):123–129.
  • Yu X, Zheng Y, Dorgan KM, et al. Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol. 2011;102(10):6134–6140.
  • Han M, Xu ZY, Du C, et al. Effects of nitrogen on the lipid and carotenoid accumulation of oleaginous yeast Sporidiobolus pararoseus. Bioprocess Biosyst Eng. 2016; doi: 10.1007/s00449-016-1620-y.
  • Yuan J, Ai Z, Zhang Z, et al. Microbial oil production by Trichosporon cutaneum B3 using cassava starch. Sheng Wu Gong Cheng Xue Bao. 2011;27(3):453–460.
  • Holdsworth JE, Ratledge C. Triacylglycerol synthesis in the oleaginous yeast Candida curvata D. Lipids. 1991;26(2):111–118.
  • Li CH, Cervantes M, Springer DJ, et al. Sporangiospore Size Dimorphism Is Linked to Virulence of Mucor circinelloides. PLoS Pathogen. 2011;7(6):e1002086.
  • Meeuwse P, Tramper J, Rinzema A. Modeling lipid accumulation in oleaginous fungi in chemostat cultures: I Development and validation of a chemostat model for Umbelopsis isabellina. Bioprocess Biosyst Eng. 2011;34(8):939–949.
  • Adachi D, Hama S, Numata T, et al. Development of an Aspergillus oryzae whole-cell biocatalyst coexpressing triglyceride and partial glyceride lipases for biodiesel production. Bioresour Technol. 2011;102(12):6723–6729.
  • Gutiérrez A, López-García S, Garre V. High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods. 2011;84(3):442–446.
  • Wynn JP, Hamid AA, Ratledge C. Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpine. Microbiology. 2001;147:2857–2864.
  • Arous F, Triantaphyllidou IE, Mechichi T, et al. Lipid accumulation in the new oleaginous yeast Debaryomyces etchellsii correlates with ascosporogenesis. Biomass Bioenergy. 2015;80:307–315.
  • Wu S, Zhao X, Shen H, et al. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol. 2011;102(2):1803–1807.
  • Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol. 2002;51(1):1–44.
  • Wu S, Hu C, Jin C, et al. Phosphate limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol. 2010;101(15):6124–6129.
  • Subramaniam R, Dufreche S, Zappi M, et al. Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol. 2010;37(12):1271–1287.
  • Venkata SG, Venkata MS. Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol. 2011;102(19):9286–9290.
  • Mata TM, Martinas AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renew Sustainable Energy Rev. 2010;14(1):217–232.
  • Wang ZT, Ullrich N, Joo S, et al. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell. 2009;8:1856–1868.
  • Li Y, Han D, Hu G. Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng. 2010;12:387–391.
  • Li Y, Han D, Hu G, et al. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 2010;107:258–268.
  • Work VH, Radakovits R, Jinkerson RE, et al. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7–10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell. 2010;9:1251–1261.
  • Radakovits R, Eduafo PM, Posewitz MC. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng. 2011;13(1):89–95.
  • Iskandarov U, Khozin-Goldberg I, Cohen Z. Selection of a DGLA-producing mutant of the microalga Parietochloris incisa: I. Identification of mutation site and expression of VLC-PUFA biosynthesis genes. Appl Microbiol Biotechnol. 2011;90:249–256.
  • Roche CM, Glass NL, Blanch HW, et al. Engineering the filamentous fungus Neurospora crassa for lipid production from lignocellulosic biomass. Biotechnol Bioeng. 2014;111(6):1097–1107.
  • Liang MH, Jiang JG. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res. 2013;52(4):395–408.
  • Tai M, Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng. 2013;15:1–9.
  • Dulermo T, Nicaud JM. Involvement of the G3P shuttle and beta-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng. 2011;13:482–491.
  • Li Y, Han D, Hu G, et al. Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyperaccumulates triacylglycerol. Metab Eng. 2010;12:387–391.
  • Lei AP, Chen H, Shen GM, et al. Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels. 2012;5(1):18–28.
  • Khot M, Kamat S, Zinjarde S, et al. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microb Cell Fact. 2012;11:71.
  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM. Micraolgae and wastewater treatment. Saudi J Biol Sci. 2012;19(3):257–275.
  • Tonon T, Harvey D, Larson TR, et al. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry. 2002;61(1):15–24.
  • Wrede D, Taha M, Miranda AF, et al. Co-Cultivation of Fungal and Microalgal Cells as an Efficient System for Harvesting Microalgal Cells, Lipid Production and Wastewater Treatment. PloS One. 2014;9(11):e113497.
  • Fan J, Cui Y, Wan M, et al. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels. 2014;7:17–30.
  • Robles-Heredia JC, Sacramento-Rivero JC, Canedo-López Y, et al. A multistage gradual nitrogen reduction strategy for increased lipid productivity and nitrogen removal in wastewater using Chlorella vulgaris and Scenedes musobliquus. Braz J Chem Eng. 2015;32(2):335–345.
  • Fakhry EM, Maghraby DMEI. Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Bot Stud. 2015;56:6–13.
  • Gultom SO, Hu B. Review of Microalgae Harvesting via Co-Pelletization with Filamentous Fungus. Energies. 2013;6:5921–5939.
  • Zhang JG, Hu B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol. 2012;114:529–535.
  • Ratledge C. Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans. 2002;30(6):1047–1050.
  • Ledesma-Amaro R, Dulermo R, Niehus X, et al. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng. 2016;38:38–46.
  • Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell. 1995;7:957–970.
  • Jaworski JG, Clough RC, Barnum SR. A cerulenin insensitive short chain 3-ketoacyl acyl carrier protein synthase in Spinacia oleracea leaves. Plant Physiol. 1989;90:41–44.
  • Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–639.
  • Zhao X, Kong X, Hua Y, et al. Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Tech. 2008;110(5):405–412.
  • Flowers MT, Ntambi JM. Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr Opin Lipidol. 2008;19:248–256.
  • Qiao K, Abidi SHI, Liu H, et al. Stephanopoulos G. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng. 2015;29:56–65.
  • Daniel HJ, Otto RT, Binder M, et al. Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deproteinized whey concentrates as substrate. Appl Microbiol Biotechnol. 1999;51(1):40–45.
  • Christopher T, Scragg AH, Ratledge C. A comparative study of citrate efflux from mitochondria of oleaginous and non oleaginous yeasts. Eur J Biochem. 1983;130(1):195–204.
  • Huang C, Zong MH, Wu H, et al. Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol. 2009;100(19):4535–4538.
  • Rajak RC, Banerjee R. Enzymatic delignification: an attempt for lignin degradation from lignocellulosic feedstock. RSC Adv. 2015;5:75281–75291.
  • Johanningmeier U, Fischer D. Perspective for the use of genetic transformants in order to enhance the synthesis of the desired metabolites: engineering chloroplasts of microalgae for the production of bioactive compounds. In: Giardi MT, Rea G, Berra B, editors. Bio-farms for nutraceuticals. NewYork, NY: Springer; 2010. p. 144–151.
  • Heydarizadeh P, Poirie I, Loizeau D, et al. Plastids of marine phytoplankton produce bioactive pigments and lipids. Mar Drugs. 2013;11:3425–3471.
  • Ma YH, Wang X, Niu YF, et al. Antisense knock down of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. Microb Cell Fact. 2014;13:100.
  • Dunahay TG, Jarvis EE, Dais SS, et al. Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol. 1996;57:223–231.
  • Xue J, Niu Y, Huang T, et al. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng. 2014;27:1–9.
  • Trentacostea EM, Shresthaa RP, Smitha SR, et al. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. PNAS. 2013;110(49):19748–19753.
  • Chauton MS, Winge P, Brembu T, et al. Gene regulation of carbon fixation, storage, and utilization in the diatom Phaeodactylum tricornutum acclimated to light/dark cycles. Plant Physiol. 2013;161(2):1034–1048.
  • LaRussa M, Bogen C, Uhmeyer A, et al. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol. 2012;162:13–20.
  • Deng XD, Gu B, Li YJ, et al. The roles of acyl-CoA:diacyl glycerol acyltransferase2 genes in the biosynthesis of triacylglycerols by the green algae Chlamydomonas reinhardtii. Mol Plant. 2012;5:945–947.
  • Hsieh HJ, Su CH, Chien LJ. Accumulation of lipid production in Chlorella minutissima by triacylglycerol biosynthesis-related genes cloned from Saccharomyces cerevisiae and Yarrowia lipolytica. J Microbiol. 2012;50:526–534.
  • Liang MH, Jiang JG. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res. 2013;52(4):395–408.
  • Shunni Z, Zhongming W, Changhua S, et al. Lipid Biosynthesis and Metabolic Regulation in Microalgae. Prog Chem. 2011;23(10):2169–2176.
  • Sebastian J, Muraleedharan C, Santhiagu A. A comparative study between chemical and enzymatic transesterification of high free fatty acid contained rubber seed oil for biodiesel production. Cogent Eng. 3(1): https://doi.org/10.1080/23311916.2016.1178370.
  • Ördög V, Stirk WA, Bálint P, et al. Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol. 2012;24(4):907–914.
  • Takagi M, Karseno, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng. 2006;101(3):223–226.
  • Liu J, Yuan C, Hu G, et al. Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Appl Biochem Biotechnol. 2012;166(8):2127–2137.
  • Sato R, Maeda Y, Yoshino T, et al. Seasonal variation of biomass and oil production of the oleaginous diatom Fistulifera sp. in outdoor vertical bubble column and raceway-type bioreactors. J Biosci Bioeng. 2014;117(6):720–724.
  • Bigogno C, Khozin-Goldberg I, Boussiba S, et al. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incise, the richest plant source of arachidonic acid. Phytochemistry. 2002;60(5):497–503.
  • Blazeck J, Hill A, Liu L, et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun. 2014;5:3131.
  • Zhu Q, Jackson EN. Metabolic engineering of Yarrowia lipolytica for industrial applications. Curr Opin Biotechnol. 2015;36:65–72.
  • Wang GY, Zhang Y, Chi Z, et al. Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Appl Microbiol Biotechnol. 2015;99(4):1637–1645.
  • Gajdoš P, Nicaud J-M, Rossignol T, et al. Single cell oil production on molasses by Yarrowia lipolytica strains overexpressing DGA2 in multicopy. Appl Microbiol Biotechnol. 2015;99(19):8065–8074.
  • Beopoulos A, Haddouche R, Kabran P, et al. Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol. 2012;93(4):1523–1537.
  • Lardon L, Hélias A, Sialve B, et al. Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol. 2009;43:6475–6481.
  • Park SJ, Choi YE, Kim EJ, et al. Serial optimization of biomass production using microalga Nannochloris oculata and corresponding lipid biosynthesis. Bioprocess Biosystems Eng. 2012;35(1-2):3–9.
  • Kim BK, Park PK, Chae HJ, et al. Effect of phenol on β-carotene content in total carotenoids production in cultivation of Rhodotorula glutinis. Korean J Chem Eng. 2004;21(3):689–692.
  • Lee JY, Yoo C, Jun SY, et al. Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technol. 2010;101(1 Suppl 1):S75–S77.
  • Du K, Sun XL, Sun YM, et al. Selection of carbon source and nitrogen source for microbial lipid production by fermentation with Trichosporon fermentans. China Oils Fats. 2010;35(7):35–38.
  • Sobus MT, Homlund CE. Extraction of lipids from yeast. Lipids. 1976;11(4):341–348.
  • Bao ZH, Shi MR. Preliminary measurement of drying property for two-phase extracted rapeseed meal and cottenseed meal. China Oils Fats. 1999;24(3):57–59.
  • Boselli E, Velazco V, Caboni M F, et al. Pressurized liquid extraction of lipids for the determination of oxysterols in eggcontaining food. J Chromatography A. 2001;917(1,2):239–244.
  • Andrich G, Zinnai A, Nesti U, et al. Supercritical fluid extraction of oil from microalga Spirulina (Arthrospira) platensis. Acta Alimentaria. 2006;35(2):195–203.
  • Herrero M, Cifuentes A, Ibanez E. Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem. 2006;98(1):136–148.
  • Teixeira RE. Energy-efficient extraction of fuel and chemical feedstocks from algae. Green Chem. 2012;14(2):419–427.
  • Young G, Nippgen F, Titterbrandt S, et al. Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Separation Purification Technol. 2010;72(1):118–121.
  • Kumar SPJ, Garlapati VK, Dash A, et al. Sustainable green solvents and techniques for lipid extraction from microalgae: A review. Algal Res. 2017;21:138–147.
  • Kavšček M, Bhutada G, Madl T, et al. Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC Syst Biol. 2015;9:72.
  • Niu YF, Zhang MH, Li DW, et al. Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs. 2013;11(11):4558–4569.
  • Bao X, Ohlrogge J. Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos. Plant Physiol. 1999;120(4):1057–1062.
  • Kerkhoven EJ, Pomraning KR, Baker SE, et al. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. NPJ Syst Biol Appl. 2016;2: doi:10.1038/npjsba.2016.6.
  • Mast B, Zohrens N, Schmidl F, et al. Lipid production for Microbial Biodiesel by the Oleaginous Yeast Rhodotorula glutinis using Hydrolysates of Wheat Straw and Miscanthus as Carbon Sources. Waste Biomass Valorization. 2014;5(6):955–962.
  • Wahlen BD, Morgan MR, McCurdy AT, et al. Biodiesel from Microalgae, Yeast, and Bacteria: Engine Performance and Exhaust Emissions. Energy Fuels. 2013;27(1):220–228.
  • Spier F, Buffon JG, Burkert CAV. Bioconversion of raw glycerol generated from the synthesis of biodiesel by different oleaginous yeasts: Lipid content and fatty acid profile of biomass. Indian J Microbiol. 2015;55(4):415–422.
  • Santamauro F, Whiffin FM, Scott RJ, et al. Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol Biofuels. 2014;7:34.
  • Sharma KK, Schuhmann H, Schenk PM. High lipid induction in Microalgae for Biodiesel Production. Energies. 2012;5(5):1532–1553.
  • Lardon L, Helias A, Sialve B, et al. Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol. 2009;43(17):6475–6481.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.