361
Views
18
CrossRef citations to date
0
Altmetric
Articles

Separate and simultaneous saccharification and fermentation of a pretreated mixture of lignocellulosic biomass for ethanol production

&
Pages 61-72 | Received 03 Aug 2017, Accepted 26 Oct 2017, Published online: 08 Dec 2017

References

  • Pereira SC, Maehara L, Machado CMM, et al. 2  G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnol Biofuels. 2015;8:44.
  • Kshirsagar SD, Waghmare PR, Loni PC, et al. Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis conditions by response surface methodology. RSC Adv. 2015;5:46525–46533.
  • Zahid A, Muhammad G, Muhammad I. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J Radiation Res Appl Sci. 2014;7:163–173.
  • McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83:37–46.
  • Toquero C, Bolado S. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour Technol. 2014;157:68–76.
  • Sukumaran RK, Vikram Joshua S, Raveendran S, et al. Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability. Bioresour Technol. 2010;101:4826–4833.
  • Goldemberg J, Coelho ST, Guardabassi P. The sustainability of ethanol production from sugarcane. Energy Policy. 2008;36:2086–2097.
  • Jönsson LJ, Alriksson B, Nilvebrant N-O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6:16.
  • Liu X, Xu W, Mao L, et al. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification. Scientific Reports. 2016;6:20361.
  • Kuila A, Mukhopadhyay M, Tuli DK, et al. Production of ethanol from lignocellulosics: an enzymatic venture. EXCLI J. 2011a;10:85–96.
  • Kuila A, Mukhopadhyay M, Tuli DK, et al. Accessibility of enzymatically delignified Bambusa bambos for efficient hydrolysis at minimum cellulase loading: an optimization study. SAGE-Hindawi Acc Res Enzyme. 2011b;2011:805795.
  • Rajak RC, Banerjee R. Enzyme mediated biomass pretreatment and hydrolysis: a biotechnological venture towards bioethanol production. RSC Adv. 2016;6:61301–61311.
  • Anwar Z, Gulfraz M, Irshad M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J Radiation Res Appl Sci. 2014;7:163–173.
  • Taherzadeh MJ, Karimi K. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources. 2007;2:707–738.
  • Canas AI, Camarero S. Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv. 2010;28:694–705.
  • Rajak RC, Banerjee R. Enzymatic delignification: an attempt for lignin degradation from lignocellulosic feedstock. RSC Adv. 2015;5:75281–75291.
  • Avanthi A, Banerjee R. A strategic laccase mediated lignin degradation of lignocellulosic feedstocks for ethanol production. Ind Crops Prod. 2016;94:174–185.
  • Wang YZ, Liao Q, Lv FL, et al. Solid simultaneous saccharification and fermentation of rice straw for bioethanol production using nitrogen gas stripping. RSC Adv. 2015;5:55328–55335.
  • Rana V, Eckard AD, Ahring BK. Comparison of SHF and SSF of wet exploded corn stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. saccharolyticus. Springer Plus. 2014;3:516.
  • Kumar S, Singh SP, Mishra IM, et al. Recent advances in production of bioethanol from lignocellulosic biomass. Chem Eng Technol. 2009;32:517–526.
  • Kuila A, Banerjee R. Simultaneous saccharification and fermentation of enzyme pretreated Lantana camara using S. cerevisiae. Bioprocess Biosyst Eng. 2014;37:1963–1969.
  • Xu F, Yu J, Tesso T, et al. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl Energy. 2013;104:801–809.
  • Bhattacharya SS, Garlapati VK, Banerjee R. Optimization of laccase production using response surface methodology coupled with differential evolution. New Biotechnol. 2011;28:31–39.
  • Das M, Banerjee R, Bal S. Multivariable parameter optimization for the endoglucanase production by Trichoderma reesei Rut C30 from Ocimum gratissimum seed. Brazilian Arch Biol Technol. 2008;51:35–41.
  • Kumar S, Gujjala LKS, Banerjee R. Simultaneous pretreatment and saccharification of bamboo for biobutanol production. Ind Crops Prod. 2017;101:21–28.
  • Zhang Q, Lo CM, Ju LK. Factors affecting foaming behavior in cellulase fermentation by Trichoderma reesei Rut C-30. Bioresourse Technol. 2007;98:753–760.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–428.
  • Seo HB, Kim HJ, Lee OK, et al. Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process. J Ind Microbiol Biotechnol. 2009;36:285–292.
  • Banerjee R, Chintagunta AD, Ray S. A cleaner and eco-friendly bioprocess for enhancing reducing sugar production from pineapple leaf waste. J Cleaner Prod. 2017;149:387–395.
  • Barakat A, Monlau F, Solhy A, et al. Mechanical dissociation and fragmentation of lignocellulosic biomass: Effect of initial moisture, biochemical and structural proprieties on energy requirement. Appl Energy. 2015;142:240–246.
  • Eka T, Muryanto Sni, Haznan A. The effect of substrate loading on simultaneous saccharification and fermentation process for bioethanol production from oil palm empty fruit bunches. Energy Procedia. 2015;68:138–146.
  • Alfani A, Gallifuoco F, Saporosi A, et al. Comparison of SHF and SSF process for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol. 2000;25:184–192.
  • Tomas-Pejo E, Oliva JM, Ballesteros M, et al. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng. 2008;100:1122–1131.
  • Terán HR, Ienny JV, Marcelino PF, et al. Ethanol production in a simultaneous saccharification and fermentation process with interconnected reactors employing hydrodynamic cavitation-pretreated sugarcane bagasse as raw material. Bioresour Technol. 2017;243:652–659.
  • Ferreira, de Oliveira Faber M, da Silva Mesquita S, et al. Simultaneous saccharification and fermentation process of different cellulosic substrates using a recombinant Saccharomyces cerevisiae harbouring the β-glucosidase gene. Electron J Biotechnol. 2010;13:.
  • Han M, Choi GW, Kim Y, et al. Bioethanol production by Miscanthus as a lignocellulosic biomass: focus on high efficiency conversion to glucose and ethanol. Bioresources. 2011;6:1939–1953.
  • Camargo D, Gomes SD, Sene L. Ethanol production from sunflower meal biomass by simultaneous saccharification and fermentation (SSF) with Kluyveromyces marxianus ATCC 36907. Bioprocess Biosyst Eng. 2014;37:2235–2242.
  • Pessani NK, Atiyeh HK, Wilkins MR, et al. Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: the effect of enzyme loading, temperature and higher solid loadings. Bioresour Technol. 2011;102:10618–10624.
  • Tomás-Pejó E, Oliva JM, González A, et al. Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel. 2009;88:2142–2147.
  • Ballesteros I, Oliva JM, Ballesteros M, et al. Optimization of the simultaneous saccharification and fermentation process using thermotolerant yeasts. Appl Biochem Biotechnol. 1993;39–40:201–211.
  • Ballesteros I, Ballesteros M, Cabañas A, et al. Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. Appl Biochem Biotechnol. 1991;28–29:307–315.
  • Çöpür Y, Tozluoglu A, Özkan M. Evaluating pretreatment techniques for converting hazelnut husks to bioethanol. Bioresour Technol. 2012; <https://doi.org/10.1016/j.biortech.2012.11.058> accessed September 2015.
  • Saini JK, Agrawal R, Satlewal A, et al. Second generation bioethanol production at high gravity of pilot-scale pretreated wheat straw employing newly isolated thermotolerant yeast Kluyveromyces marxianus DBTIOC-35. RSC Advances. 2015;5:37485–37494.
  • Awan AT, Sukamoto JT, Tasic L. Orange waste as a biomass for 2G-ethanol production using low cost enzymes and co-culture fermentation. RSC Adv. 2013;3:25071–25078.
  • Melo WC, dos Santos AS, Santa Anna LMM, et al. Acid and enzymatic hydrolysis of the residue from castor bean (ricinus communis L) oil extraction for ethanol production: detoxification and biodiesel process integration. J Brazilian Chem Soc. 2008;19:418–425.
  • Kataria R, Ghosh S. Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. Bioresour Technol. 2011;102:9970–9975.
  • Raveendran S, Mathiyazhakan K, Parameswaran B, et al. Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresour Technol. 2011;102:10915–10921.
  • Li MF, Fan YM, Xu F, et al. Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: characterization of the cellulose rich fraction. Ind Crops Prod. 2010;32:551–559.
  • Boakye-Boaten NA, Xiu S, Shahbazi A, et al. Liquid hot water pretreatment of Miscanthus X giganteus for sustainable production of bioethanol. Bioresources. 2015;10:5890–5905.
  • Imamoglu E, Sukan FV. The effects of single and combined cellulosic agrowaste substrates on bioethanol production. Fuel. 2014;134:477–484.
  • Kabir MM, Forgacs G, Sarvari Horvath I. Biogas from lignocellulosic materials. In: Karimi K, editors. Lignocellulose-based bioproducts, Biofuel and Biorefinery technologies 1. Switzerland: Springer; 2015. p. 207–252.
  • Nhuchhen DR, Basu P, Acharya B. A comprehensive review on biomass torrefaction. Int J Renewable Energy & Biofuels. 2014;2014:506379.
  • Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci. 2012;38:449–467.
  • Olofsson K, Bertilsson M, Lidén G. A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels. 2008;1:7.
  • Poletto M, Ornaghi Júnior HL, Zattera AJ. Native cellulose: structure, characterization and thermal properties. Materials. 2014;7:6105–6119.
  • Bhutto AW, Qureshi K, Harijan K, et al. Strategies for the consolidation of biologically mediated events in the conversion of pre-treated lignocellulose into ethanol. RSCAdvances. 2014;4:3392–3412.
  • Doblin MS, Kurek I, Jacob-Wilk D, et al. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol. 2002;43:1407–1420.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.