1,500
Views
73
CrossRef citations to date
0
Altmetric
Articles

Microbial fuel cells: a sustainable solution for bioelectricity generation and wastewater treatment

, , , , &
Pages 11-31 | Received 13 Oct 2017, Accepted 19 Nov 2017, Published online: 30 Jan 2018

References

  • CPCB BULLETIN VOL.-I. JULY 2016. Updated on December 6th, 2016. [Online]. Available from: http://cpcb.nic.in/upload/Latest/Latest_123_SUMMARY_BOOK_FS.pdf
  • Kaewkannetra P, Chiwes W, Chiu TY. Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. Fuel. 2011;90:2746–2750. DOI:10.1016/j.fuel.2011.03.031.
  • Ho IP, Chenjie W, Lian-Shin L. Coal tar wastewater treatment and electricity production using a membrane-less tubular microbial fuel cell. Biotechnol Bioprocess Eng. 2012;17:654–660. DOI:10.1007/s12257-011-0374-2
  • Feng Y, Yang Q, Wang X, et al. Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresour Technol. 2011;102:411–415. DOI:10.1016/j.biortech.2010.05.059
  • Pandey P, Shinde VN, Deopurkar RL, et al. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy. 2016;168:706–723.
  • Tommasi T, Lombardelli G. Energy sustainability of Microbial Fuel Cell (MFC): a case study. J Power Sources. 2017;356:438–447.
  • Lee D-J, Chang, J-S, Lai J-Y. Microalgae-microbial fuel cell: a mini review, Bioresour Technol. 2015;198:891–895. Available from: https://doi.org/10.1016/j.biortech.2015.09.061
  • Saratale RG, Kuppam C, Mudhoo A, et al. Bioelectrochemical systems using microalgae – a concise research update. Chemosph. 2017;177:35–43.DOI:10.1016/j.chemosphere.2017.02.132.
  • Roy S, Marzorati S, Schievano A, et al. Microbial fuel cells. Encyclopedia of sustainable technologies. 1st ed. 2017. p. 245–259. Available from: https://doi.org/10.1016/B978-0-12-409548-9.10122-8
  • Potter MC. Electrical effects accompanying the decomposition of organic compounds. Proc R SocSer B. 1912;84:260–276.
  • Schaetzle O, Barriere F, Baronian K. Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity. Energy Environ Sci. 2008;1:607–620.
  • Logan BE. Microbial fuel cells. New Jersy: John Wiley & Sons; 2008. ISBN 978-0-470-23948-3.
  • Velasquez-Orta SB, Curtis TP, Logan BE. Energy from algae using microbial fuel cells. Biotech Bioeng. 2009;103:6.
  • Gajda I, Greenman J, Melhuish C, et al. Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomas Bioenerg. 2015;82:87–93.
  • Schroder U, Harnisch F, Angenent LT. Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci. 2015;8:513–519.
  • Zhou M, Wang H, Hassett DJ, et al. Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J ChemTechnol Biotechnol. 2013;88(4):508–518. DOI:10.1002/jctb.4004.
  • Santoro C, Arbizzani C, Erable B, et al. Microbial fuel cells: from fundamentals to applications. A review. J Power Sources. 2017;356:225–244.
  • Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: a promisisng technology for wastewater treatment and bioenergy. Biotech Adv. 2007;25:464–482.
  • Abrevaya XC, Sacco N J, Bonetto MC, et al. Analytical applications of microbial fuel cells. Part I: biochemical oxygen demand. Biosenso Bioelectron. 2015;63:580–590.
  • Rahimnejad M, Adhami A, Darvari S, et al. Microbial fuel cell as new technology for bioelectricity generation: a review. Alexa Eng J. 2015;54:745–756.
  • Baudler A, Schmidt I, Langner M, et al. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ Sci. 2015;8:2048–2055.
  • Zhou X, Chen X, Li H, et al. Surface oxygen-rich titanium as anode for high performance microbial fuel cell. Electrochim Acta. 2016;209:582–590.
  • Lanas AV, Ahn Y, Logan BE. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode. J Power Sources. 2013;247:228–234.
  • Hutchinson AJ, Tokash JC, Logan BE. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells. J Power Sources. 2011;196:9213–9219.
  • Srikanth S, Marsili E, Flickinger MC, et al. Maximizing productivity of chromatography steps for purification of monoclonal antibodies. Biotechnol Bioeng. 2008;99:1065–1073.
  • Ieropoulos I, Greenman J, Melhuish C. Improved energy output levels from small-scale Microbial Fuel Cells. Bioelectrochem. 2010;78:44–50.
  • Artyushkova K, Roizman D, Santoro C, et al. Anodic biofilms as the interphase for electroactive bacterial growth on carbon veil. Biointerphas. 2016;11:031013.
  • Qiao Y, Li CM, Bao SJ, et al. Carbon nanotube/ polyaniline composite as anode material for microbial fuel cells. J Power Sources. 2007;170:79–84.
  • Pathak AK, Tyagi VV, Singh HM, et al. Membrane-less microbial fuel cell: a low-cost sustainable approach for clean energy and environment. In: Singh DP, Kothari R, et al. editors. Emerging energy alternatives for sustainable environment. New Delhi, India: TERI Press. Inc; 2016. p. 35–56. ISBN: 9788-1799-34111.
  • Marashi SKF, Kariminia HR. Performance of a single chamber microbial fuel cell at different organic loads and pH values using purified terephthalic acid wastewater. J Envir Health Sci Eng. 2015;13:27.
  • Pandit S, Nayak BK, Das D. Microbial carbon capture cell using cyanobacteria for simultaneous power generation, carbon dioxide sequestration and wastewater treatment. Bioresour Technol. 2012;107:97–102.
  • Zain SM, Ching NL, Jusoh S, et al. Different types of microbial fuel cell (MFC) systems for simultaneous electricity generation and pollutant removal. Jurnal Teknologi (Sciences & Engineering). 2015;74(3):13–19.
  • Puig S, Serra M, Coma M, et al. Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresour Technol. 2010;101:9594–9599.
  • Cristiani P, Carvalho ML, Guerrini E, et al. Cathodic and anodic biofilms in single chamber microbial fuel cells. Bioelectrochem. 2013;92:6–13.
  • Fernandez F, Lobato J, Villasenor J, et al. Microbial fuel cell: the definitive technological approach for valorizing organic wastes. Handbook of Environ Chemist. 2014;32:287–316.
  • Park HS, Kim BH, Kim HS, et al. A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaero. 2001;7:297–306.
  • Jadhav GS, Ghangrekar MM. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol. 2009;100:717–723.
  • Mei X, Xing D, Yang Y, et al. Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature. Bioelectrochemist. 2017;117:29–33.
  • Wang Y, Guo WQ, Xing DF, et al. Hydrogen production using biocathode single-chamber microbial electrolysis cells fed by molasses wastewater at low temperature. Int J Hydrog Energ. 2014;39:19369–19375. Available from: http://dx.doi.org/10.1016/j.ijhydene.2014.07.071
  • Heidrich ES, Dolfing J, Wade MJ, et al. Temperature, inocula and substrate: Contrasting electroactive consortia, diversity and performance in microbial fuel cells. Bioelectrochemist. 2018;119:43–50. Available from: https://doi.org/10.1016/j.bioelechem.2017.07.006
  • Pathak AK, Singh HM, Singh S, et al. Microbes: A Viable Mean for Wastewater Treatment and Source of Bioenergy. In: Singh YS, Singh DP, editors. Microbes in sustainable management of soil, water and agriculture. New Delhi, India: Studium Press, Inc; 2016. p. 277–302. ISBN: 978-93-80012-83-4.
  • Bond DR, Lovley DR. Electricity production by Geobactersulfurreducens attached to electrodes. Appl Envir Microbiol. 2003, 69(3);1548–1555.
  • Park TJ, Ding W, Cheng S, et al. Microbial community in microbial fuel cell (MFC) medium and effluent enriched with purple photosynthetic bacterium (Rhodopseudomonas sp.). AMB Express. 2014;4:22. Available from: http://www.amb-express.com/content/4/1/22
  • Monzon O, Yang Y, Kim J, et al. Microbial fuel cell fed by Barnett Shale produced water: power production by hypersaline autochthonous bacteria and coupling to a desalination unit. Biochem Eng J. 2017;117:87–91.
  • Esfandyari M, Fanaei MA, Gheshlaghi R, et al. Dynamic modeling of a continuous two-chamber microbial fuel cell with pure culture of Shewanella. Int J Hydroge Energy. 2017;117:34–42.
  • Zhang Y, Noori JS, Angelidaki I. Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC), Energy Environ Sci. 2011;4:4340–4346.
  • Lakaniemi AM, Tuovinen OH, Puhakka JA. Production of electricity and butanol from microalgal biomass in microbial fuel cells, Bio Energy Res. 2012;5:481–491.
  • Kakarla R, Min B. Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode. Bioprocess Biosyst Eng. 2014;37:2453–2461.
  • Kondaveeti S, Choi KS, Kakarla R, et al. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs), Front Environ Sci Eng. 2014;8:784–791.
  • Fan Z, Li J, Zhou Y, et al. A green, cheap, high-performance carbonaceous catalyst derived from Chlorella pyrenoidosa for oxygen reduction reaction in microbial fuel cells. Interna J Hydro Energy. 2017;42:27657–27665.
  • Walter XA, Greenman J, Taylor B, et al. Microbial fuel cells continuously fuelled by untreated fresh algal biomass. Algal Res. 2015;11:103–107.
  • Wu C, Liu XW, Li WW, et al. A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell. Appl Energ. 2012;98:594–596.
  • Gal I, Schlesinger O, Amir L, et al. Yeast surface display of dehydrogenases in microbial fuel-cells. Bioelectrochemist. 2016;112:53–60.
  • Cai WF, Geng JF, Pu KB, et al. Investigation of a two-dimensional model on microbial fuel cell with different biofilm porosities and external resistances. Chem Eng J. 2017; Available from: https://doi.org/10.1016/j.cej.2017.09.189
  • Pinto RP, Srinivasan B, Manuel MF, et al. A two-population bio-electrochemical model of a microbial fuel cell. Bioresour Technol. 2010;101:5256–5265.
  • Xu L, Zhao Y, Doherty L, et al. The integrated processes for wastewater treatment based on the principle of microbial fuel cells: a review. Critic Revi Environ Sci Technol. 2016;46(1):60–91.
  • Yang N, Ren Y, Li X, et al. Effect of short-term alkaline intervention on the performance of buffer-free single-chamber microbial fuel cell. Bioelectrochemist. 2017;115:41–46.
  • Logrono W, Perez M, Urquizo G, et al. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: a preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemospher. 2017;176:378–388. DOI:10.1016/j.chemosphere.2017.02.099.
  • Zhang E, Wang F, Zhai W, et al. Efficient removal of nitrobenzene and concomitant electricity production by single-chamber microbial fuel cells with activated carbon air-cathode. Bioresour Technol. 2017;229:111–118.
  • Zhang E, Yu Q, Zhai W, et al. High tolerance of and removal of cefazolin sodium in single-chamber microbial fuel cells operation. Bioresour Technol. 2017; Available from: https://doi.org/10.1016/j.biortech.2017.10.005 [assessed on 8/10/2017 http://www.sciencedirect.com/science/article/pii/S0960852417317923]
  • Pant D, Van Bogaert G, Diels L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol. 2010;101:1533–1543.
  • Xiao B, Yang F, Liu J. Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments. J Hazard Mater. 2011;189:444–449.
  • Zhuang L, Zheng Y, Zhou S, et al. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresour Technol. 2012;106:82–88.
  • Wu S, Li H, Zhou X, et al. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res. 2016;98:396–403.
  • Fraiwan A, Choi S. A stackable two-chambered, paper-based microbial fuel cell. Biosen Bioelectron. 2016;83:27–32.
  • Gaviria LA, Rodriguez OG, Banuelos MF, et al. Stacked-MFC into a typical septic tank used in public housing. Biofuels. 2016;7(2):79–86. Available from: https://doi.org/10.1080/17597269.2015.1118783
  • Jayashree C, Tamilarasan K, Rajkumar M, et al. Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm. J Environ Manag. 2016;180:351–358.
  • Tamilarasan K, Banua JR, Jayashree C, et al. Effect of organic loading rate on electricity generating potential of upflow anaerobic microbial fuel cell treating surgical cotton industry wastewater. J Environ Chem Eng. 2017;5:1021–1026.
  • Sangeetha T, Guo Z, Liu W, et al. Cathode material as an influencing factor on beer wastewater treatment and methane production in a novel integrated upflow microbial electrolysis cell (Upflow-MEC). Int J Hydro Energy. 2016;41(4):2189–2196. Available from: https://doi.org/10.1016/j.ijhydene.2015.11.111
  • Abbas SZ, Rafatullah M, Ismail N, et al. A review on sediment microbial fuel cells as a new source of sustainable energy and heavy metal remediation: mechanisms and future prospective. Int J Energy Res. 2017;41:1242–1264.
  • MallaShrestha P. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci. 2014;7:408–415.
  • Steinbusch KJ, Hamelers HV, Schaap JD, et al. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol. 2009;44:513–517.
  • Zhou YL, Yang Y, Chen M, et al. To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into fresh water sediments. Bioresour Technol. 2014;159:232–239.
  • Huang DY, Zhoua SG, Chen Q, et al. Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chem Eng J. 2011;172:647–653.
  • Moqsud M, Yoshitake J, Bushra Q, et al. Compost in plant microbial fuel cell for bioelectricity generation. Waste Manag. 2015;36:63–69.
  • Yadav AK, Dash P, Mohanty A, et al. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecol Eng. 2012;47:126–131.
  • Villasenor J, Capilla P, Rodrigo MA, et al. Operation of a horizontal subsurface flow constructed wetland-microbial fuel cell treating wastewater under different organic loading rates. Water Res. 2013;47:6731–6738.
  • Camacho JV, Romero LR, Marchante CMF, et al. The salinity effects on the performance of a constructed wetland-microbial fuel cell. Ecol Eng. 2017;107:1–7.
  • Wu H, Zhang J, Ngo HH, et al. A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol. 2015;175:594–601.
  • Corbella C, Puigagut J, Garf M. Life cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells. Sci Tot Environ. 2017;584–585:355–362.
  • Zhao Y, Collum S, Phelan M, et al. Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chem Eng J. 2013;229:364–370.
  • Fang Z, Song HL, Cang N, et al. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresour Technol. 2013;144:165–171.
  • Liu S, Song H, Li X, et al. Power Generation Enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. Int J Photoenerg. 2013; Article ID 172010, 10 pages.
  • Liu S, Song H, Wei S, et al. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland - microbial fuel cell systems. Bioresour Technol. 2014;166:575–583.
  • Doherty L, Zhao Y, Zhao X, et al. Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology. Chem Eng J. 2015;266:74–81.
  • Fang Z, Song HL, Cang N, et al. Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosens Bioelectron. 2015;68:135–141. PMID: 25562740
  • Borjas Z, Esteve-Núnez A, Ortiz JM. Strategies for merging microbial fuel cell technologies in water desalination processes: Start-up protocol and desalination efficiency assessment. J Power Sources. 2017;356:519–528.
  • Logan BE, Wallack MJ, Kim KY, et al. Assessment of Microbial Fuel Cell Configurations and Power Densities. Environ. Sci. Technol. Lett. 2015;2:206–214.
  • Saeed HM, Husseini GA, Yousef S, et al. Microbial desalination cell technology: a review and a case study. Desalinati. 205;359:1–13.
  • Zhang F, He Z. Scaling up microbial desalination cell system with a post-aerobic process for simultaneous wastewater treatment and seawater desalination. Desalinati. 2015;360:28–34.
  • Sophia AC, Bhalambaal VM. Microbial water desalination and bio-electricity generation – role of biomass carbon. Curr Sci. 2016;111:6.
  • Li Y, Styczynski J, Huang Y, et al. Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC). J Power Sources. 2017;356:529–538.
  • Wang YK, Sheng GP, Li WW, et al. Development of a novel bioelectrochemical membrane reactor for wastewater treatment. Environ Sci Technol. 2011;45:9256–9261.
  • Malaeb L, Katuri KP, Logan BE, et al. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment. Environ Sci Technol. 2013;47:11821–11828.
  • Li Y, Liu L, Yang F, et al. Performance of carbon fiber cathode membrane with C–Mn–Fe–O catalyst in MBR–MFC for wastewater treatment. J Memb Sci. 2015;484:27–34.
  • Huang L, Li X, Renac Y, et al. Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell. RSC Adv. 2017;7:20824–20832.
  • Kim N, Choi Y, Jung S, et al. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol Bioeng. 2000;70:109–114.
  • Catal T, Xu S, Li K, et al. Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens Bioelectron. 2008;24:849–854.
  • Catal T, Li K, Bermek H, et al. Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources. 2008;175:196–200.
  • Rikame SS, Mungray AA, Mungray AK. Electricity generation from acidogenic food waste leachate using dual chamber mediator less microbial fuel cell. Int Biodeter Biodegr. 2012;75:131–137.
  • Li XM, Cheng KY, Selvam A, et al. Bioelectricity production from acidic food waste leachate using microbial fuel cells: effect of microbial inocula. Process Biochem. 2013;48:283–288.
  • Yang Q, Wang X, Feng Y, et al. Electricity generation using eight amino acids by air–cathode microbial fuel cells. Fuel. 2012;102:478–482.
  • Kiely PD, Rader G, Regan JM, et al. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation end products. Bioresour Technol. 2011;102:361–366.
  • Liu H, Cheng S, Logan BE. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol. 2005;39:658–662.
  • Ha PT, Tae B, Chang IS. Performance and bacterial consortium of microbial fuel cell fed with formate. Energy Fuel. 2008;22:164–168.
  • Hu WJ, Niu CG, Wang Y, et al. Nitrogenous heterocyclic compounds degradation in the microbial fuel cells. Process Saf Environ. 2011;89:133–140.
  • Song TS, Wu XY, Zhou CC. Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate. Bioprocess Biosyst Eng. 2014;37:133–138. PMID: 23708676
  • Luo Y, Liu G, Zhang R, et al. Power generation from furfural using the microbial fuel cell. J Power Sources. 2010;195:190–194.
  • Li X, Zhu N, Wang Y, et al. Animal carcass wastewater treatment and bioelectricity generation in up-flow tubular microbial fuel cells: effects of HRT and non-precious metallic catalyst. Bioresour Technol. 2013;128:454–460.
  • Feng Y, Yang Q, Wang X, et al. Treatment of biodiesel production wastes with simultaneous electricity generation using a single chamber microbial fuel cell. Bioresour Technol. 2011;102:411–415.
  • Huang J, Yang P, Guo Y, et al. Electricity generation during wastewater treatment: an approach using an AFB-MFC for alcohol distillery wastewater. Desalinati. 2011;276:373–378.
  • Guo F, Fu G, Zhang Z, et al. Mustard tuber wastewater treatment and simultaneous electricity generation using microbial fuel cells. Bioresour Technol. 2013;136:425–430.
  • Zhang B, Zhao H, Zhou S, et al. A novel UASB–MFC–BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresour Technol. 2009;100:5687–5693.
  • Santoro C, Ieropoulos I, Greenman J, et al. Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine. Int J Hydrog Energy. 2013;38:11543–11551.
  • Fangzhou D, Zhenglong L, Shaoqiang Y, et al. Electricity generation directly using human feces wastewater for life support system. Acta Astronaut. 2011;68:1537–1547.
  • Patil SA, Surakasi VP, Koul S, et al. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour Technol. 2009;100:5132–5139.
  • Wen Q, Wu Y, Zhao L, et al. Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell. Fuel. 2010;89:1381–1385.
  • Rengasamy K, Berchmans S. Simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacteraceti and Gluconobacterroseus. Bioresour Technol. 2012;104:388–393.
  • Kaewkannetra P, Chiwes W, Chiu T. Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. Fuel. 2011;90:2746–2750.
  • Cheng S, Kiely P, Logan BE. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous–cathode MEC improves power generation in air–cathode MFCs. Bioresour Technol. 2011;102:367–371.
  • Cusick RD, Kiely PD, Logan BE. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewater. Int J Hydroge Energy. 2010;35:8855–8861.
  • Sciarria TP, Merlino G, Scaglia B, et al. Electricity generation using white and red wine lees in air cathode microbial fuel cells. J Power Sources. 2015;274:393–399.
  • Cao X, Song H, Yu C, et al. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell. Bioresour Technol. 2015;189:87–93.
  • Herrero-Hernandez E, Smith TJ, Akid R. Electricity generation from wastewaters with starch as carbon source using a mediatorless microbial fuel cell. Biosens Bioelectron. 2013;39:194–198.
  • Wen Q, Kong F, Zheng H, et al. Electricity generation from synthetic penicillin wastewater in an air-cathode single chamber microbial fuel cell. Chem Eng J. 2011;168:572–576.
  • Guo X, Zhan Y, Chen C, et al. Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel. Renew Energy. 2016;87:437–444.
  • Nor MHM, Mubarak MFM, Elmi HSA, et al. Bioelectricity generation in microbial fuel cell using natural microflora and isolated pure culture bacteria from anaerobic palm oil mill effluent sludge. Bioresour Technol. 2015;190:458–465.
  • Lu N, Zhou S, Zhuang L, et al. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J. 2009;43:246–251.
  • Samsudeen N, Radhakrishnan TK, Matheswaran M. Bioelectricity production from microbial fuel cell using mixed bacterial culture isolated from distillery wastewater. Bioresour Technol. 2015;195:242–247.
  • Tremouli A, Antonopoulou G, Bebelis S, et al. Operation and characterization of a microbial fuel cell fed with pretreated cheese whey at different organic loads. Bioresour Technol. 2013;131:380–389.
  • Rabaey K, Clauwaert P, Aelterman P, et al. Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol. 2005;39:8077–8082.
  • Park HI, Wu C, Lin LS. Coal tar wastewater treatment and electricity production using a membrane-less tubular microbial fuel cell. Biotechnol Bioprocess Eng. 2012;17:654–660.
  • Huang L, Yang X, Quan X, et al. A microbial fuel cell–electrooxidation system for coking wastewater treatment and bioelectricity generation. J Chem Technol Biotechnol. 2010;85:621–627.
  • Mansoorian HJ, Mahvi AH, Jafari AJ, et al. Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell. J Saudi Chem Soc. 2014; Available from: https://doi.org/10.1016/j.jscs.2014.08.002
  • Sakdaronnarong CK, Thanosawan S, Chaithong S, et al. Electricity production from ethanol stillage in two-compartment MFC. Fuel. 2013;107:382–386.
  • Jiang H, Luo S, Shi X, et al. A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation. J Cent South Univ. 2013;20:488–494.
  • Wang M, Yan Z, Huang B, et al. Electricity generation by microbial fuel cells fuelled with enteromorphaprolifera hydrolysis. Int J Electrochem Sci. 2013;8:2104–2111.
  • Venkata Mohan S, Mohanakrishna G, Sarma PN. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. Bioresour Technol. 2010;101:970–976.
  • Chookaew T, Prasertsan P, Ren ZJ. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. New Biotechnol. 2014;31:179–184.
  • Zuo Y, Maness PC, Logan BE. Electricity production from steam-exploded corn stover biomass. Energy Fuel. 2006;20:1716–1721.
  • Behera M, Jana PS, More TT, et al. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry. 2010;79:228–233. PMID: 20615762
  • Kim JR, Dec J, Bruns MA, et al. Removal of odors from swine wastewater by using microbial fuel cells. Appl Environ Microbiol. 2008;74:2540–2543.
  • FoadMarashi SK, Kariminia HR, Savizi ISP. Bimodal electricity generation and aromatic compounds removal from purified terephthalic acid plant wastewater in a microbial fuel cell. Biotechnol Lett. 2013;35:197–203. PMID: 23076363
  • Kalathil S, Lee J, Cho MH. Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell. Bioresour Technol. 2012;119:22–27.
  • Touach N, Ortiz-Martínez VM, Salar-Garcíab MJ, et al. Influence of the preparation method of MnO2-based cathodes on the performance of single-chamber MFCs using wastewater. Sep Purifi Technol. 2016;171:174–181.
  • Penteado ED., Fernandez-Marchante CM, Zaiat M, et al. Influence of sludge age on the performance of MFC treating winery wastewater. Chemospher. 2016;151:163–170.
  • Sawasdee V, Pisutpaisal N. Simultaneous pollution treatment and electricity generation of tannery wastewater in air-cathode single chamber MFC. Int J Hydrog Energy. 2016;41(35):15632–15637.
  • Touach N, Ortiz-Martinez VM, Salar-Garcia MJ, et al. On the use of ferroelectric material LiNbO3 as novel photocatalyst in wastewater-fed microbial fuel cells. Particuolog. 2017;34:147–155.
  • Rabaey K, Boon N, Siciliano SD, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol. 2004;70:5373–5382.
  • Min B, Logan BE. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol. 2004;38:5809–5814.
  • Kim JR, Jung SH, Regan JM, et al. Electricity generation and microbial community analysis of alcohols powered microbial fuel cells. Bioresour Technol. 2007;98:2568–2577.
  • Choi J, Chang HN, Han J. Performance of microbial fuel cell with volatile fatty acids from food wastes. Biotechnol Lett. 2011;33:705–714. PMID: 21184134
  • Lee HS, Parameswaran P, Kato-Marcus A, et al. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res. 2008;42:1501–1510.
  • Wu CH, Yet-Pole I, Chiu YH, et al. Enhancement of power generation by toluene biodegradation in a microbial fuel cell in the presence of pyocyanin. J Taiwan Inst Chem Eng. 2015;45:2319–2324.
  • Yang Q, Wang X, Feng Y, et al. Electricity generation usingeight amino acids by air–cathode microbial fuel cells. Fuel. 2012;102:478–482.
  • Heilmann J, Logan BE. Production of electricity from proteins using a microbial fuel cell. Water Environ Res. 2006;78:531–537.
  • Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol. 2004;38:4040–4046.
  • Zhu F, Wang W, Zhang X, et al. Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode. Bioresour Technol. 2011;102:7324–7328.
  • Fangzhou D, Xie B, Dong W, et al. Continuous flowing membraneless microbial fuel cells with separated electrode chambers. Bioresour Technol. 2011;102:8914–8920.
  • Sangeetha T, Muthukumar M. Catholyte performance as an influencing factor on electricity production in a dual-chambered microbial fuel cell employing food processing wastewater. Energy Sour Part A. 2011;33:1514–1522.
  • Thung W-E, Ong S-A, Ho L-N, et al. Simultaneous wastewater treatment and power generation with innovative design of an upflow membrane-less microbial fuel cell. Water Air Soil Poll. 2015;226:165.
  • Jang JK, Phama TH, Changa IN, et al. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Proc Biochem. 2004;39:1007–1012.
  • Hu, Z. Electricity generation by a baffle-chamber membraneless microbial fuel cell. J Power Sources. 2008;179(1):27–33.
  • You S, Zhao Q, Zhang J, et al. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. J Power Sources. 2007;173:172–177.
  • Ghangrekar, MM, Shinde VB. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour Technol. 2007;98:2879–2885.
  • Yang S, Jia B, Liu H. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell. Bioresour Technol. 2009;100:1197–1202.
  • Aba A, Enrico M, Loredana S, et al. Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell. Bioresour Technol. 2009;100:3252–3260.
  • Guo Q, Shuju Z, Xuyun W, et al. Electricity generation Characteristics of an Anaerobic fluidized bed Microbial fuel cell. The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering. 2010; Details available at: http://dc.engconfintl.org/cgi/viewcontent.cgi?article=1037…fluidization_xiii
  • Rabaey K, Willy V. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005;23:291–298.
  • Li Z, Zhang X, Zeng Y, et al. Electricity production by an overflow-type wetted-wall microbial fuel cell. Bioresour Technol. 2009;100:2551–2555. PMID: 19157869
  • Zheng X, Nirmalakhandan N. Cattle wastes as substrates for bioelectricityproduction via microbial fuel cells. Biotechnol Lett. 2010;32:1809–1814. PMID: 20661625
  • Wang X, Feng YJ, Liu J et al. Sequestation of CO2 2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens. Bioelectron. 2010; 25: 2639–2643.
  • Dengbin, Y, Lu B, Junfeng Z, et al. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Talanta. 2017;168:210–216.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.