77
Views
2
CrossRef citations to date
0
Altmetric
Article

Impact of chlorpyrifos, TCP and N-substituted aromatic compounds on methane production from organic solid waste (OSW) using co-culture of Pseudomonas aeruginosa and Methanosarcina mazei

ORCID Icon &
Pages 919-927 | Received 29 Sep 2017, Accepted 06 Jan 2018, Published online: 09 Feb 2018

References

  • Lin CY, Lay CH, Chu CY, et al. Fermentative hydrogen production from wastewaters: a review and prognosis. Int J Hydrog Energ. 2012;37:15632–15642.
  • Kumar G, Lin CY. Biogenic hydrogen conversion of de-oiled Jatropha waste (DJW) via anaerobic sequencing batch reactor operation: process performance, microbial insights and CO2 reduction efficiency. Scientific World J. 2014;2014:1–9.
  • Zinder SH. Physiological ecology of methanogens. In: Ferry JG, editor. Methanogenesis: ecology, physiology, biochemistry, and genetics. New York: Chapman and Hall; 1993. p. 128–206.
  • Pavlostathis SG, Giraldo-Gomez E. Kinetics of anaerobic treatment. Water Sci Technol. 1991;24(8):35–59.
  • Zehnder AJB. Ecology of methane formation. In: Mitchell R, editor. Water pollution microbiology. Vol. 2. New York: John Wiley & Sons; 1978. p. 349–376.
  • Calli B, Cirgin E. Microbial analysis of leachate using fluorescent in situ hybridization (FISH) technique to evaluate the landfill stability. Fresenius Environ Bull. 2005;14(8):737–745.
  • Calli B, Durmaz S, Mertoglu B. Identification of prevalent microbial communities in a municipal solid waste landfill. Water Sci Technol. 2006;53(8):139–147.
  • Huang LN, Chen YQ, Zhou H, et al. Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol. 2003;46(2):171–177.
  • Huang LN, Zhou H, Chen YQ, et al. Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiol Lett. 2002;214(2):235–240.
  • Laloui-Carpentier W, Li T, Vigneron V, et al. Methanogenic diversity and activity in municipal solid waste landfill leachates. Anton Leeuw. 2006;89:423–434.
  • Staley BF, de los Reyes FL III, Barlaz MA. Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl Environ Microb. 2011a;77(7):2381–2391.
  • Rao MS, Singh SP, Singh AK, et al. Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage. Appl Energ. 2000;66:75–87.
  • Bareither CA, Wolfe GL, McMahon KD, et al. Microbial diversity and dynamics during methane production from municipal solid waste. Waste Manage. 2013;33:1982–1992.
  • Tchobanoglous G, Hilary T, Vigil SA. Integrated solids waste management: engineering principles and management issues. New York city, USA: McGraw-Hill; 1997.
  • Gupta M, Velayutham P, Elbeshbishy E, et al. Co-fermentation of glucose, starch, and cellulose for mesophilic biohydrogen production. Int J Hydrogen Energ. 2014;39(36):20958–20967.
  • Fricke K, Santen H, Wallmann R, et al. Operating problems in anaerobic digestion plants from nitrogen in MSW. Waste Manag. 2007;27(1):30–43.
  • Mashad HM, Zeeman G, Van Loon WK, et al. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresource Technol. 2004;95(2):191–201.
  • Debord J. Coefficient de partage. Accessed: 15 April 2012. Available: www.unilim.fr/pagespeso.
  • Donlon B, Razo-flores E, Field J, et al. Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge. Appl Environ Microbiol. 1995;61(11):3889–3893.
  • Kayembe K, Basosila L, Kalala K, et al. Effect of para substituted anilines chemical structure on methane biosynthesis by the methanogens. Int J Biochem Res Rev. 2013;3(4):303–314.
  • Field JA, Stams AJM, Kato M, et al. Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Anton Leeuw. 1995;67:47–77.
  • Kumaraswamy S, Rath AK, Satpathy SN, et al. Influence of the carbofuran on the production and oxidation of methane in a flooded rice soil. Biol Fert Soils. 1998;25:362–366.
  • Lal R. Accumulation, metabolism and effect of organophosphorus insecticides on microorganisms. Adv Appl Microbiol. 1982;28:149–200.
  • Babu z. F. Factors affecting the methanogenic activity of Methanothrix soehngenii VNBF. Appl Environ Microbiol. 1987;53(12):2978–2982.
  • Hungate RE. A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW, editors. Methods in microbiology. Vol. 3b, London: Academic Press; 1969. p. 117–132.
  • Yeung T, Kwan M, Adler L, et al. Increased methane production in cyanobacteriamethanogenic microbe co-cultures. Bioresource Technol. 2017;243:686–692.
  • Beneragama N, Iwasaki M, Umetsu K. Methane production from thermophilic co-digestion of dairy manure and waste milk obtained from therapeutically treated cows. Anim Sci J. 2016;88(2):401–409.
  • APHA. Standard methods for the examination of water and wastewater. Washington, DC, USA: American Public Health Association; 2005.
  • Clarens M, Bernet N, Delgeneés JP, et al. Effects of nitrogen oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS Microbiol Ecol. 1998;25:271–276.
  • Jager D, Sharma CM, Thomsen J, et al. Deep sequencing analysis of the Methanosarcina mazei Go1 transcriptome in response to nitrogen availability. Proc Nat Acad Sci USA. 2009;106(51):21878–21882.
  • Kayembe K, Basosila L, Mpiana PT, et al. The effect of the monosubstituted benzenes functional groups on the inhibition of methane gas biosynthesis. J Sust Bio Syst. 2012;2:92–96.
  • Gorontzy T, Kuver J, Blotevogel KH. Microbial transformation of nitroaromatic compounds under anaerobic conditions. J Gen Microbiol. 1993;139:1331–1336..
  • Mpiana P. Biophysique médicale. Resud Edition, Kinshasa, Sauramps medica, French; 2010.
  • Tereda H. The interaction of highly active uncouplers with mitochondria. Biochim Biochimica et Biophysica Acta. 1981;639:225–242.
  • Neves EG, Oliveira R, Alves MM. Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures. Waste Manage. 2008;28:965–972.
  • Diaz E, Ferrandez A, Prieto MA, et al. Biodegradation of aromatic compounds by escherichia coli. Microbiol Mol Biol Rev. 2001; 65(4):523–569.
  • Harishankar MK, Sasikala C, Ramya M. Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures. 3 Biotech. 2013;3:137–142.
  • Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70(2):567–590.
  • Whitman WB, Bowen TL, Boone DR, The methanogenic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schliefer K-H, editors. Prokaryotes. 3rd ed. Vol. 2. New York: Springer; 2006. p. 165–207.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.