499
Views
4
CrossRef citations to date
0
Altmetric
Articles

Production of crude bio-oil and biochar from hydrothermal conversion of jujube stones with metal carbonates

, ORCID Icon, , &
Pages 613-623 | Received 12 Sep 2017, Accepted 09 Feb 2018, Published online: 13 Mar 2018

References

  • Tekin K, Karagöz S, Bektaş S. A review of hydrothermal biomass processing. Renew Sustain Energy Rev. 2014;40:673–687.
  • Guizani C, Jeguirim M, Gadiou R, et al. Biomass char gasification by H 2 O, CO 2 and their mixture: Evolution of chemical, textural and structural properties of the chars. Energy. 2016;112:133–145.
  • Binder JB, Raines RT. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc. 2009;131(5):1979–1985.
  • Tekin K. Hydrothermal conversion of russian olive seeds into crude bio-oil using a CaO catalyst derived from waste mussel shells. Energy Fuels. 2015;29(7):4382–4392.
  • Kang S, Li X, Fan J, et al. Hydrothermal conversion of lignin: a review. Renew Sustain Energy Rev. 2013;27:546–558.
  • Stevens C, Brown RC. Thermochemical processing of biomass: conversion into fuels, chemicals and power. West Sussex: John Wiley & Sons; 2011.
  • Luque R, Clark JH. Water-tolerant Ru-Starbon® materials for the hydrogenation of organic acids in aqueous ethanol. Catal Commun. 2010;11(10):928–931.
  • Kraiem T, Hassen-Trabelsi AB, Naoui S, et al. Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Process Technol. 2015;138:404–412.
  • Kraiem T, Hassen AB, Belayouni H, et al. Production and characterization of bio-oil from the pyrolysis of waste frying oil. Environ Sci Pollution Res. 2017;24(11):9951–9961.
  • Oyebanji J, Okekunle P, Lasode O, et al. Chemical composition of bio-oils produced by fast pyrolysis of two energy biomass. Biofuels. 2017:1–9. doi:10.1080/17597269.2017.1284473.
  • Inyang M, Gao B, Pullammanappallil P, et al. Biochar from anaerobically digested sugarcane bagasse. Bioresour Technol. 2010;101(22):8868–8872.
  • Jain A, Balasubramanian R, Srinivasan M. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem Eng J. 2016;283:789–805.
  • Haddad K, Jeguirim M, Jerbi B, et al. Olive Mill Wastewater: From a Pollutant to Green Fuels, Agr Water Source Biofertilizer ACS Sustainable Chem Eng. 2017;5(10):8988–8996.
  • Sınağ A, Yumak T, Balci V, et al. Catalytic hydrothermal conversion of cellulose over SnO 2 and ZnO nanoparticle catalysts. J Supercrit Fluid. 2011;56(2):179–185.
  • Singh R, Chaudhary K, Biswas B, et al. Hydrothermal liquefaction of rice straw: Effect of reaction environment. J Supercrit Fluid. 2015;104:70–75.
  • Novianti S, Nurdiawati A, Zaini IN, et al. Hydrothermal treatment of palm oil empty fruit bunches: an investigation of the solid fuel and liquid organic fertilizer applications. Biofuels. 2016;7(6):627–636.
  • Gao Q-H, Wu C-S, Wang M. The jujube (Ziziphus jujuba Mill.) fruit: a review of current knowledge of fruit composition and health benefits. J Agric Food Chem. 2013;61(14):3351–3363.
  • Liu D, Ye X, Jiang Y. Chinese dates: A traditional functional food. Boca Raton, FL: CRC Press; 2016.
  • Pawlowska AM, Camangi F, Bader A, et al. Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) fruits. Food Chem. 2009;112(4):858–862.
  • Rohm H, Brennan C, Turner C, et al. Adding value to fruit processing waste: innovative ways to incorporate fibers from berry pomace in baked and extruded cereal-based foods—a SUSFOOD project. Foods. 2015;4(4):690–697.
  • Déniel M, Haarlemmer G, Roubaud A, et al. Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction. Renew Sustain Energy Rev. 2016;54:1632–1652.
  • Yedro FM, García-Serna J, Cantero DA, et al. Hydrothermal hydrolysis of grape seeds to produce bio-oil. RSC Advances. 2014;4(57):30332–30339.
  • Déniel M, Haarlemmer G, Roubaud A, et al. Optimisation of bio-oil production by hydrothermal liquefaction of agro-industrial residues: Blackcurrant pomace (Ribes nigrum L.) as an example. Biomass Bioenergy. 2016;95:273–285.
  • Wang F, Chang Z, Duan P, et al. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils. Bioresour Technol. 2013;149:509–515.
  • Tran DQ, Rai C. A kinetic model for pyrolysis of Douglas fir bark. Fuel. 1978;57(5):293–298.
  • McKee D, Chatterji D. The catalytic behavior of alkali metal carbonates and oxides in graphite oxidation reactions. Carbon. 1975;13(5):381–390.
  • Teramoto Y, Tanaka N, Lee SH, et al. Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid‐free ethanol cooking and ball milling. Biotechnol Bioeng. 2008;99(1):75–85.
  • Tekin K, Karagöz S. Non-catalytic and catalytic hydrothermal liquefaction of biomass. Res Chem Intermed. 2013 Feb;39(2):485–498. doi:10.1007/s11164-012-0572-3. PubMed PMID: WOS:000313730900003; English.
  • Miller J, Evans L, Littlewolf A, et al. Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents. Fuel. 1999;78(11):1363–1366.
  • Akhtar J, Amin NAS. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energy Rev. 2011;15(3):1615–1624.
  • Minowa T, Zhen F, Ogi T. Liquefaction of cellulose in hot compressed water using sodium carbonate: products distribution at different reaction temperatures. J Chem Eng Jpn. 1997;30(1):186–190.
  • Pala M, Kantarli IC, Buyukisik HB, et al. Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresour Technol. 2014;161:255–262.
  • Brown TM, Duan P, Savage PE. Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels. 2010;24(6):3639–3646.
  • Akalın MK, Tekin K, Karagöz S. Hydrothermal liquefaction of cornelian cherry stones for bio-oil production. Bioresour Technol. 2012;110:682–687.
  • Valdez PJ, Nelson MC, Faeth JL, et al. Hydrothermal liquefaction of bacteria and yeast monocultures. Energy Fuels. 2013;28(1):67–75.
  • Hartman BE, Hatcher PG. Hydrothermal liquefaction of isolated cuticle of Agave americana and Capsicum annuum: chemical characterization of petroleum-like products. Fuel. 2015;156:225–233.
  • Ragauskas AJ, Beckham GT, Biddy MJ, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344(6185):1246843.
  • Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol. 2001;79(3):277–299.
  • Jáuregui O, Galceran MT. Phenols. Handbook Anal Separat. 2001;3:175–236.
  • Hosamani KM. A rich source of novel 9-ketooctadec-cis-15-enoic acid from Cassia absus seed oil and its possible industrial utilization. Ind Eng Chem Res. 1994;33(4):1058–1061.
  • Mohan SV, Devi MP. Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment. Bioresour Technol. 2012;123:627–635.
  • Sevilla M, Fuertes AB, Mokaya R. High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ Sci. 2011;4(4):1400–1410.
  • Sevilla M, Fuertes AB. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon. 2009;47(9):2281–2289.
  • Zhu X, Liu Y, Zhou C, et al. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon. 2014;77:627–636.
  • Regmi P, Moscoso JLG, Kumar S, et al. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manage. 2012;109:61–69.
  • Chen Z, Chen B, Chiou CT. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures. Environ Sci Technol. 2012;46(20):11104–11111.
  • Kumar S, Loganathan VA, Gupta RB, et al. An assessment of U (VI) removal from groundwater using biochar produced from hydrothermal carbonization. J Environ Manage. 2011;92(10):2504–2512.
  • Guizani C, Jeguirim M, Valin S, et al. Biomass chars: The effects of pyrolysis conditions on their morphology, structure, Chemical Properties and Reactivity. Energies. 2017;10(6):796.
  • Falco C, Baccile N, Titirici M-M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem. 2011;13(11):3273–3281.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.