1,333
Views
24
CrossRef citations to date
0
Altmetric
Article

A review on microalgae strains, cultivation, harvesting, biodiesel conversion and engine implementation

ORCID Icon, &
Pages 91-102 | Received 29 Nov 2017, Accepted 14 Feb 2018, Published online: 09 Apr 2018

References

  • Sigar CP, Soni SL, Mathur J, et al. Performance and emission characteristics of vegetable oil as diesel fuel extender. Energy Sources, Part A Recover Util Environ Eff. 2009;31:139–148.
  • Benemann JR. CO2 mitigation with microalgae systems. Energy Convers Manage. 1997;38:475–479.
  • McKendry P. Energy production from biomass (part 2): Conversion technologies. Bioresour Technol. 2002;83(1):47–54.
  • Yokoyama S, Oil production from garbage by thermochemical liquefaction, Biomass and Bioenergy. 1995;8(2):117–120.
  • Tsukahara K, Kimura T, Minowa T, et al. Microalgal cultivation in a solution recovered from the low-temperature catalytic gasification of the microalga. J Biosci Bioeng. 2001;91(3):311–313.
  • Alam F, Date A, Rasjidin R, et al. Biofuel from algae-Is it a viable alternative? Procedia Eng. 2012;49:221–227.
  • Singh A, Nigam PS, Murphy JD. Renewable fuels from algae: An answer to debatable land based fuels. Bioresour Technol. 2011;102(1):10–16.
  • Ong HC, Silitonga AS, Masjuki HH, et al. Production and comparative fuel properties of biodiesel from non-edible oils : Jatropha curcas, Sterculia foetida and Ceiba pentandra. Energy Convers Manag. 2013;73:245–255.
  • Kleinova A, Cvengrosova Z, Rimarcik J, et al. Biofuels from algae. Procedia Eng. 2012;42(August):231–238.
  • Milano J, Ong HC, Masjuki HH, et al. Microalgae biofuels as an alternative to fossil fuel for power generation. Renew. Sustain. Energy Rev. 2016;58:180–197.
  • Najafi G, Ghobadian B, Yusaf TF. Algae as a sustainable energy source for biofuel production in Iran : a case study. Renew Sustain Energy Rev. 2011;15(8):3870–3876.
  • Suali E, Sarbatly R. Conversion of microalgae to biofuel. Renew Sustain Energy Rev. 2012;16(6):4316–4342.
  • Schenk PM, Thomas-Hall SR, Stephens E, et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res. 2008;1(1):20–43.
  • Lim DK, Sharma K, Garg S, et al. The race for highly productive microalgae strains. Biofuels. 2010;1(6):835–837.
  • Venteris ER, Skaggs RL, Wigmosta MS, et al. A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass and Bioenergy. 2014;64:276–290.
  • Jebali A, Acién FG, Gómez C, et al. Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production. Bioresour Technol.198:424–430. Dec. 2015;.
  • Rawat I, Ranjith Kumar R, Mutanda T, et al. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl Energy. 2013;103:444–467.
  • Pachapur VL et al. Co-culture strategies for increased biohydrogen production. Biomass and Bioenergy. 2015;(July):1479–1504.
  • Demirbas A. Biofuels securing the planet's future energy needs. Energy Convers Manag. 2009;50(9):2239–2249.
  • Damartzis T, Zabaniotou A. Thermochemical conversion of biomass to second generation biofuels through integrated process design-A review. Renew Sustain Energy Rev. 2011;15(1):366–378.
  • Chisti Y, Yan J. Energy from algae: current status and future trends. Algal biofuels - A status report. Appl Energy. 2011;88(10):3277–3279.
  • Carlson A. Micro- and macro-algae: utility for industrial applications. Output from the EPOBIO project 2007;(September).
  • Baral SS, Singh K, Sharma P. The potential of sustainable algal biofuel production using CO2 from thermal power plant in India. Renew Sustain Energy Rev. 2015;49:1061–1074.
  • Karpagam R, Preeti R, Ashokkumar B, et al. Ecotoxicology and Environmental Safety Enhancement of lipid production and fatty acid pro fi ling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Ecotoxicol Environ Saf. 2015;1–5.
  • Zhang J, Chen WT, Zhang P, et al. Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts. Bioresour Technol. 2013;133:389–397.
  • Demirbas A. Progress and recent trends in biofuels. Prog Energy Combust Sci. 2007;33(1):1–18.
  • Singh J, Gu S. Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev. 2010;14(9):2596–2610.
  • Fakhry EM, El Maghraby DM. Fatty acids composition and biodiesel characterization of dunaliella salina. J Water Resour Prot. 2013;2013(September):894–899.
  • Harun R, Singh M, Forde GM, et al. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev. 2010;14(3):1037–1047.
  • Amaro HM, Guedes AC, Malcata FX. Advances and perspectives in using microalgae to produce biodiesel. Appl Energy. 2011;88(10):3402–3410.
  • Banerjee A, Sharma R, Chisti Y, et al. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology. 2002;22(3):245–279.
  • Liu AY, Chen W, Zheng LL, et al. Identification of high-lipid producers for biodiesel production from forty-three green algal isolates in China. Prog Nat Sci Mater Int. 2011;21(4):269–276.
  • K. C. and F.-J. M.-R. Kinetic and Stoichiometric Relationships of the Energy and Carbon Metabolism in the Culture of Microalgae. Biotechnology(Faisalabad). 2004;3(1):21–34.
  • Alam F, Mobin S, Chowdhury H. Third Generation Biofuel from Algae. Procedia Eng. 2015;105(Icte 2014):763–768.
  • Ubando AT, Cuello JL, Culaba AB, et al. Multi-criterion evaluation of cultivation systems for sustainable algal biofuel production using analytic hierarchy process and Monte Carlo simulation. Energy Procedia. 2014;61:389–392.
  • Saleem M, Moe LA. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice. Trends Biotechnol. 2014;32(10):529–537.
  • Zhou W, Chen P, Min M, et al. Environment-enhancing algal biofuel production using wastewaters. Renew Sustain Energy Rev. 2014;36:256–269.
  • Demirbas A. Use of algae as biofuel sources. Energy Convers Manag. 2010;51(12):2738–2749.
  • Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol. 1999;70(1–3):313–321.
  • Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.
  • Andersson V, Broberg Viklund S, Hackl R, et al. Algae-based biofuel production as part of an industrial cluster. Biomass and Bioenergy. 2014;71:113–124.
  • Ho SH, Chen CY, Lee DJ, et al. Perspectives on microalgal CO2-emission mitigation systems - a review. Biotechnol Advance. 2011;29:189–198.
  • Lee Y. Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol. 2000;13:307–315.
  • Wang B, Li Y, Wu N, et al. CO2 bio-mitigation using microalgae. Applied Microbiol Biotechnology. 2008;79:707–718.
  • Min M, Wang L, Li Y, et al. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol. 2011;165(1):123–137.
  • Chisti Y. Biodiesel from microalgae. Trends Biotechnol. 2008;26(3):126–131.
  • Rawat I, Kumar RR, Mutanda T, et al. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy. 2011;88:3411–3424.
  • Show K-Y, Lee D-J, Mujumdar AS. Advances and Challenges on Algae Harvesting and Drying. Dry Technol. 2015;33(4):386–394.
  • Chen CY, Yeh KL, Aisyah R, et al. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology. 2011;102:71–81.
  • Uduman N, Qi Y, Danquah MK, et al. Marine microalgae flocculation and focussed beam reflectance measurement. Chemical Engineering Journal. 2010;162:935–940.
  • Hemaiswarya S, Raja R, Carvalho IS, et al. An Indian scenario on renewable and sustainable energy sources with emphasis on algae. Appl Microbiol Biotechnol. 2012;96(5):1125–1135.
  • Araujo GS, Matos LJBL, Fernandes JO, et al. Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method. Ultrason Sonochem. 2013;20(1):95–98.
  • Halim R, Gladman B, Danquah MK, et al. Oil extraction from microalgae for biodiesel production. Bioresour Technol. 2011;102(1):178–185.
  • Seo YH, Sung M, Oh YK, et al. Lipid extraction from microalgae cell using persulfate-based oxidation. Bioresour Technol. 2016;200:1073–1075.
  • Kates M. Extraction procedures. Techniques of lipidology isolation, analysis, and identification of lipids. Amsterdam: Elsevier Science Publisher; 1986b.
  • Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv. 2012;30(3):709–732.
  • Sathish A, Sims RC. Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresour Technol. 2012;118:643–647.
  • Mouahid A, Crampon C, Toudji S-AA, et al. Supercritical CO2 extraction of neutral lipids from microalgae: Experiments and modelling. J Supercrit Fluids. 2013;77(0):7–16.
  • Yen HW, Yang SC, Chen CH, et al. Supercritical fluid extraction of valuable compounds from microalgal biomass. Bioresour Technol. 2015;184:291–296.
  • Bhateria R, Dhaka R. Algae as biofuel. Biofuels. 2015;5(6):607–631.
  • Durak H, Aysu T. Thermochemical liquefaction of algae for bio-oil production in supercritical acetone/ethanol/isopropanol. J Supercrit Fluids. 2015;111:179–198.
  • Tan CH, Show PL, Chang JS, et al. Novel approaches of producing bioenergies from microalgae: a recent review. Biotechnol Adv. 2014;33(6):1219–1227.
  • Pan JL, Wang HM, Chen CY, et al. Extraction of astaxanthin from Haematococcus pluvialis by supercritical carbon dioxide fluid with ethanol modifier. Eng Life Sci. 2012;12(6):638–647.
  • Pourmortazavi SM, Hajimirsadeghi SS. Supercritical fluid extraction in plant essential and volatile oil analysis. J Chromatogr A. 2007;1163(1–2):2–24.
  • Machmudah S, Shotipruk A, Goto M, et al. Extraction of Astaxanthin from Haematococcus plu W ialis using supercritical CO2 and Ethanol as Entrainer. Ind Eng Chem Res. 2006;3652–3657.
  • Suganya T, Varman M, Masjuki HH, et al. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sustain Energy Rev. 2016;55:909–941.
  • Palavra AMF, Coelho JP, Barroso JG, et al. Supercritical carbon dioxide extraction of bioactive compounds from microalgae and volatile oils from aromatic plants. J Supercrit Fluids. 2011;60:21–27.
  • Crampon C, Mouahid A, Toudji SAA, et al. Influence of pretreatment on supercritical CO2 extraction from Nannochloropsis oculata. J Supercrit Fluids. 2013;79:337–344.
  • Bozbas K. Biodiesel as an alternative motor fuel: production and policies in the European Union. Renew Sustain Energy Rev. 2008;12(2):542–552.
  • Mendes RL, Nobre BP, Cardoso MT, et al. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chim Acta. 2003;356:328–334.
  • Papamichail I, Louli V, Magoulas K. Supercritical fluid extraction of celery seed oil. J Supercrit Fluids. 2000;18(3):213–226.
  • Tang Cin, Wang H, Li S, et al. Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J Supercrit Fluids. 2011;57(1):44–49.
  • Singh B, Bux F, Sharma YC. Comparison of homogeneous and heterogeneous catalysis for synthesis of biodiesel from Madhuca Idica Oil. Chem Ind Chem Eng Q. 2011;17(2):117–124.
  • Sharma YC, Singh B, Korstad J. Application of an efficient nonconventional heterogeneous catalyst for biodiesel synthesis from pongamia pinnata oil. Energy and Fuels. 2010;24(5):3223–3231.
  • Miao X, Wu Q. Biodiesel production from heterotrophic microalgal oil. Bioresour Technol. 2006;97:841–846.
  • Zeng JL, Wang XD, Zhao B, et al. Rapid in situ transesterification of sunflower oil. Ind Eng Chem Res. 2009;48(2):850–856.
  • Viêgas CV, Hachemi I, Freitas SP, et al. A route to produce renewable diesel from algae: Synthesis and characterization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel. Fuel. 2015;155:144–154.
  • Suganya T, Kasirajan R, Renganathan S. Ultrasound-enhanced rapid in situ transesterification of marine macroalgae Enteromorpha compressa for biodiesel production. Bioresour Technol. 2014;156:283–290.
  • Patil PD, Gude VG, Mannarswamy A, et al. Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol. 2011;102(1):118–122.
  • Banković-Ilić IB, Stamenković OS, Veljković VB. Biodiesel production from non-edible plant oils. Renew Sustain Energy Rev. 2012;16(6):3621–3647.
  • Demirbas A. Studies on cottonseed oil biodiesel prepared in non-catalytic SCF conditions. Bioresour Technol. 2008;99(5):1125–1130.
  • Silva C, Colonelli TAS, Silva EA, et al. Continuous catalyst-free production of esters from Jatropha curcas L. oil under supercritical ethanol. Brazilian J Chem Eng. 2014;31(3):727–735.
  • Karmakar A, Karmakar S, Mukherjee S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol. 2010;101(19):7201–7210.
  • Tüccar G, Aydın K. Evaluation of methyl ester of microalgae oil as fuel in a diesel engine. Fuel. 2013;112:203–207.
  • Haik Y, Selim MYE, Abdulrehman T. Combustion of algae oil methyl ester in an indirect injection diesel engine. Energy. 2011;36(3):1827–1835.
  • J J, A K, V R. Effect of injection timing on the combustion characteristics of rice bran and algae biodiesel blends in a compression-ignition engine. Int J Ambient Energy. 2015;(May 2015):1–6.
  • Makarevičienė V, Lebedevas S, Rapalis P, et al. Performance and emission characteristics of diesel fuel containing microalgae oil methyl esters. Fuel. 2014;120:233–239.
  • Singh D, Singal SK, Garg MO, et al. Transient performance and emission characteristics of a heavy-duty diesel engine fuelled with microalga Chlorella variabilis and Jatropha curcas biodiesels Bureau of Indian Standards. ENERGY Convers Manag. 2015;106:892–900.
  • Mostafa SSM, El-Gendy NS. Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel. Arab J Chem. 2013;
  • Xu Y, Keresztes I, Condo AM, et al. Droplet combustion characteristics of algae-derived renewable diesel, conventional #2 diesel, and their mixtures. Fuel. 2016;167:295–305.
  • Mofijur M, Rasul MG, Hyde J. Recent developments on internal combustion engine performance and emissions fuelled with biodiesel-diesel-ethanol blends. Procedia Eng. 2014;105(Icte 2015):658–664.
  • Atabani AE, Silitonga AS, Ong HC, et al. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sustain Energy Rev. 2013;18:211–245.
  • Scragg AH, Morrison J, Shales SW. The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme Microb Technol. 2003;33(7):884–889.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.