680
Views
16
CrossRef citations to date
0
Altmetric
Articles

Thermochemical pyrolysis of biomass using solar energy for efficient biofuel production: a review

ORCID Icon, ORCID Icon, , ORCID Icon, &
Pages 125-134 | Received 17 Jan 2018, Accepted 08 Mar 2018, Published online: 02 May 2018

References

  • Hossain AK, Davies PA. Pyrolysis liquids and gases as alternative fuels in internal combustion engines–a review. Renew Sust Energ Rev. 2013;21:165–189.
  • Sayigh A. Withdrawn: Worldwide progress in renewable energy. Renew Energ. 2009;.
  • Patton MQ, Utilization-focused evaluation. USA: Sage publications; 2008.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev. 2010;14(1):217–232.
  • Abdullah H, Wu H. Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy Fuels. 2009;23(8):4174–4181.
  • Montes MJ, Abánades A, Martínez-Val JM. Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple. Sol Energy. 2009;83(5):679–689.
  • Beattie WH, Berjoan R, Coutures J-P. High-temperature solar pyrolysis of coal. Sol Energy. 1983;31(2):137–143.
  • Naik SN, Goud VV, Rout PK, et al. Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev. 2010;14(2):578–597.
  • Bose B. Global warming: energy, environmental pollution, and the impact of power electronics. IEEE Ind Electron Mag. 2010;4(1):6–17.
  • Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils. J Biosci Bioeng. 2001;92(5):405–416.
  • Meng X, Yang J, Xu X, et al. Biodiesel production from oleaginous microorganisms. Renew Energ. 2009;34(1):1–5.
  • Nabi MN, Akhter MS, Zaglul Shahadat MM. Improvement of engine emissions with conventional diesel fuel and diesel–biodiesel blends. Bioresour Technol. 2006;97(3):372–378.
  • Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 2005;86(10):1059–1070.
  • Singh SP, Singh D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sust Energ Rev. 2010;14(1):200–216.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.
  • Carraretto C, Macor A, Mirandola A, et al. Biodiesel as alternative fuel: experimental analysis and energetic evaluations. Energy. 2004;29(12–15):2195–2211.
  • Ramadhas AS, Muraleedharan C, Jayaraj S. Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil. Renew Energ. 2005;30(12):1789–1800.
  • Pienkos PT, Darzins A. The promise and challenges of microalgal‐derived biofuels. Biofuels Bioprod Biorefin. 2009;3(4):431–440.
  • Murugan S, Gu S. Research and development activities in pyrolysis–contributions from Indian scientific community–a review. Renew Sust Energ Rev. 2015;46:282–295.
  • Saha S, Biswas S, Pal S. Survey analysis, scope and application of biomass energy in India. In: Non Conventional Energy (ICONCE), 2014 1st International Conference on; IEEE; 2014.
  • Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Prog Energy Combust Sci. 2011;37(1):52–68.
  • Garcìa-Pèrez M, Chaala A, Roy C. Vacuum pyrolysis of sugarcane bagasse. J Anal Appl Pyrolysis. 2002;65(2):111–136.
  • Demirbaş A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag. 2001;42(11):1357–1378.
  • Mckendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83(1):37–46.
  • Demirbaş A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag. 2000;41(6):633–646.
  • White LP, Plaskett LG. Biomass as fuel. London: Academic Press Ltd; 1981.
  • Demiral İ, Ayan EA. Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresour Technol. 2011;102(4):3946–3951.
  • Ortega JV, Renehan AM, Liberatore MW, et al. Physical and chemical characteristics of aging pyrolysis oils produced from hardwood and softwood feedstocks. J Anal Appl Pyrolysis. 2011;91(1):190–198.
  • Cao J-P, Xiao X-B, Zhang S-Y, et al. Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste. Bioresour Technol. 2011;102(2):2009–2015.
  • Gerçel HF. Bio-oil production from Onopordum acanthium L. by slow pyrolysis. J Anal Appl Pyrolysis. 2011;92(1):233–238.
  • Önal EP, Uzun BB, Pütün AE. Steam pyrolysis of an industrial waste for bio-oil production. Fuel Process Technol. 2011;92(5):879–885.
  • Amutio M, Lopez G, Artetxe M, et al. Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resour Conserv Recycl. 2012;59:23–31.
  • Thangalazhy-Gopakumar S, Adhikari S, Ravindran H, et al. Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresour Technol. 2010;101(21):8389–8395.
  • Heo HS, Park HJ, Park Y-K, et al. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresour Technol. 2010;101(1):S91–S96.
  • Heo HS, Park HJ, Dong J-I, et al. Fast pyrolysis of rice husk under different reaction conditions. J Ind Eng Chem. 2010;16(1):27–31.
  • Islam MR, Parveen M, Haniu H. Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis. Bioresour Technol. 2010;101(11):4162–4168.
  • Mullen CA, Boateng AA, Goldberg NM, et al. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy. 2010;34(1):67–74.
  • Ertaş M, Alma MH. Pyrolysis of laurel (Laurus nobilis L.) extraction residues in a fixed-bed reactor: Characterization of bio-oil and bio-char. J Anal Appl Pyrolysis. 2010;88(1):22–29.
  • Zhang H, Xiao R, Huang H, et al. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol. 2009;100(3):1428–1434.
  • Asadullah M, Anisur Rahman M, Mohsin Ali M, et al. Jute stick pyrolysis for bio-oil production in fluidized bed reactor. Bioresour Technol. 2008;99(1):44–50.
  • Özbay N, Apaydın-Varol E, Burcu Uzun B, et al. Characterization of bio-oil obtained from fruit pulp pyrolysis. Energy. 2008;33(8):1233–1240.
  • Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.
  • Oyeniyi Y, Itiola O. The physicochemical characteristic of microcrystalline cellulose, derived from sawdust, agricultural waste products. Int J Pharm Pharm Sci. 2012;4(1):197–200.
  • Updegraff DM. Semimicro determination of cellulose inbiological materials. Anal Biochem. 1969;32(3):420–424.
  • Raveendran K. Pyrolysis characteristics of biomass and biomass components. Fuel. 1996;75(8):987–998.
  • Simashkevich A, Serban D, Bruc L, et al. Indium tin oxide thin-films prepared by vapor phase pyrolysis for efficient silicon based solar cells. Thin Solid Films. 2016;610:35–41.
  • Thunman H, Niklasson F, Johnsson F, et al. Composition of volatile gases and thermochemical properties of wood for modeling of fixed or fluidized beds. Energy Fuels. 2001;15(6):1488–1497.
  • Tsai W, Lee M, Chang Y. Fast pyrolysis of rice husk: product yields and compositions. Bioresour Technol. 2007;98(1):22–28.
  • Onay Ö, Beis SH, KoçKar ÖM. Fast pyrolysis of rape seed in a well-swept fixed-bed reactor. J Anal Appl Pyrolysis. 2001;58:995–1007.
  • Zanzi R, Sjöström K, Björnbom E. Rapid pyrolysis of agricultural residues at high temperature. Biomass Bioenergy. 2002;23(5):357–366.
  • Onay O, Beis S, Kockar O. Pyrolysis of walnut shell in a well-swept fixed-bed reactor. Energy Sources. 2004;26(8):771–782.
  • Beis SH, Onay Ö, KoçKar ÖM. Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions. Renew Energ. 2002;26(1):21–32.
  • Ateş F, Pütün E, Pütün AE. Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil. J Anal Appl Pyrolysis. 2004;71(2):779–790.
  • Encinar JM, Gonzalez JF, Gonzalez J. Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions. Fuel Process Technol. 2000;68(3):209–222.
  • Agblevor FA, Besler S. Inorganic compounds in biomass feedstocks. 1. Effect on the quality of fast pyrolysis oils. Energy Fuels. 1996;10(2):293–298.
  • Dupont C, Commandré J-M, Gauthier P, et al. Biomass pyrolysis experiments in an analytical entrained flow reactor between 1073 and 1273 K. Fuel. 2008;87(7):1155–1164.
  • Nunn TR, Howard JB, Longwell JP, et al., Product compositions and kinetics in the rapid pyrolysis of milled wood lignin. Ind Eng Chem Process Des Dev (United States). 1985;24(3):844–852.
  • Fagbemi L, Khezami L, Capart R. Pyrolysis products from different biomasses: application to the thermal cracking of tar. Appl Energy. 2001;69(4):293–306.
  • Şensöz S, Can M. Pyrolysis of pine (Pinus brutia Ten.) chips: 1. Effect of pyrolysis temperature and heating rate on the product yields. Energy Sources. 2002;24(4):347–355.
  • Balci S, Dogu T, Yücel H. Pyrolysis kinetics of lignocellulosic materials. Ind Eng Chem Res (United States). 1993;32(11):2573–2579.
  • Barooah J, Long V. Rates of thermal decomposition of some carbonaceous materials in a fluidized bed. Fuel. 1976;55(2):116–120.
  • Uzun BB, Pütün AE, Pütün E. Fast pyrolysis of soybean cake: product yields and compositions. Bioresour Technol. 2006;97(4):569–576.
  • Di Blasi C, Signorelli G, Di Russo C, et al. Product distribution from pyrolysis of wood and agricultural residues. Ind Eng Chem Res. 1999;38(6):2216–2224.
  • Della Rocca P, Cerrellaa EG, Bonellia PR, et al., Pyrolysis of hardwoods residues: on kinetics and chars characterization. Biomass Bioenergy. 1999;16(1):79–88.
  • Purwanto WW, et al., Effect of biomass types on bio-oil characteristics in a catalytic fast pyrolysis process with a Ni/ZSM-5 catalyst.International Journal of Technology. 2015;7:1069–1075.
  • Demirbas A, Bafail A, Ahmad W, et al. Biodiesel production from non-edible plant oils. Energ Explor Exploit. 2016;34(2):290–318.
  • Anitha A, Dawn SS. Performance characteristics of biodiesel produced from waste groundnut oil using supported heteropolyacids. Int J Chem Eng Appl. 2010;1(3):261.
  • Saidur R, Abdelaziz EA, Demirbas A, et al. A review on biomass as a fuel for boilers. Renew Sust Energ Rev. 2011;15(5):2262–2289.
  • Guo Z, et al. Catalytic cracking characteristics of bio-oil molecular distillation fraction. In: World Renewable Energy Congress-Sweden; 8–13 May; 2011; Linkö ping; Sweden; Linköping University Electronic Press; 2011.
  • Faizal H, et al. Physical and combustion characteristics of biomass residues from palm oil mills. In: New Aspects of Fluid Mechanics, Heat Transfer and Environment: Proceedings of the 8 th International Conference on Heat Transfer; Thermal Engineering and Environment; 2010.
  • Supple B, Howard-Hildige R, Gonzalez-Gomez E, et al. The effect of steam treating waste cooking oil on the yield of methyl ester. J Am Oil Chem Soc. 2002;79(2):175–178.
  • Zhang Y, Dubé MA, McLean DD, et al. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour Technol. 2003;89(1):1–16.
  • Haas MJ. Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process Technol. 2005;86(10):1087–1096.
  • Kumar A, Prakash O, Kaviti AK. A comprehensive review of Scheffler solar collector. Renew Sust Energ Rev. 2017;77:890–898.
  • Shouman ER. International and national renewable energy for electricity with optimal cost effective for electricity in Egypt. Renew Sust Energ Rev. 2017;77:916–923.
  • Hafez AZ, Attia AM, Eltwab HS, et al. Design analysis of solar parabolic trough thermal collectors. Renew Sust Energ Rev. 2018;82:1215–1260.
  • Ummadisingu A, Soni MS. Concentrating solar power–technology, potential and policy in India. Renew Sust Energ Rev. 2011;15(9):5169–5175.
  • Munir A, Hensel O, Scheffler W. Design principle and calculations of a Scheffler fixed focus concentrator for medium temperature applications. Solar Energy. 2010;84(8):1490–1502.
  • Flores V, Almanza R. Direct steam generation in parabolic trough concentrators with bimetallic receivers. Energy. 2004;29(5–6):645–651.
  • Jaramillo OA, Borunda M, Velazquez-Lucho KM, et al. Parabolic trough solar collector for low enthalpy processes: an analysis of the efficiency enhancement by using twisted tape inserts. Renew Energ. 2016;93:125–141.
  • Bellos E, Tzivanidis C, Antonopoulos KA, et al. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew Energ. 2016;94:213–222.
  • Bouvier J-L, Michaux G, Salagnac P, et al. Experimental study of a micro combined heat and power system with a solar parabolic trough collector coupled to a steam Rankine cycle expander. Solar Energy. 2016;134:180–192.
  • Xiao X, Zhang P, Shao DD, et al. Experimental and numerical heat transfer analysis of a V-cavity absorber for linear parabolic trough solar collector. Energy Convers Manag. 2014;86:49–59.
  • Wang Y, Liu Q, Lei J, et al. A three-dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid. Appl Therm Eng. 2014;70(1):462–476.
  • Selvakumar P, Somasundaram P, Thangavel P. Performance study on evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough. Energy Convers Manag. 2014;85:505–510.
  • Padilla RV, Fontalvo A, Demirkaya G, et al. Exergy analysis of parabolic trough solar receiver. Appl Therm Eng. 2014;67(1–2):579–586.
  • Balghouthi M, Ali ABH, Trabelsi SE, et al. Optical and thermal evaluations of a medium temperature parabolic trough solar collector used in a cooling installation. Energy Convers Manag. 2014;86:1134–1146.
  • Richert T, Riffelmann K, Nava P. The influence of solar field inlet and outlet temperature on the cost of electricity in a molten salt parabolic trough power plant. Energy Procedia. 2015;69:1143–1151.
  • Wang F, Feng H, Zhao J, et al. Performance assessment of solar assisted absorption heat pump system with parabolic trough collectors. Energy Procedia. 2015;70:529–536.
  • Mussard M, Nydal OJ. Influence of solar tracking inaccuracy and sun rays modeling on the efficiency of a small-scale parabolic trough. Energy Procedia. 2014;57:1508–1515.
  • Müller C, EcoAndina F, Arias C. Solar community bakeries on the Argentinean Altiplano. In: International Solar Food Processing Conference. Indore, India; 2009.
  • Jafari Mosleh H, Jahangiri Mamouri S, Shafii MB, et al. A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector. Energy Convers Manag. 2015;99:141–150.
  • Larcher M, Rommel M, Bohren A, et al. Characterization of a parabolic trough collector for process heat applications. Energy Procedia. 2014;57:2804–2811.
  • Tyroller M, Brücke S, Werdenbergstr G. Solar steam sterilizer for rural hospitals. In: International Solar Cooker Conference, Granada, Spain; 2006.
  • Munir A. Design, development and modeling of a solar distillation system for the processing of medicinal and aromatic plants. 2010.
  • Chandak A, Somani S. Design of multistage evaporators for integrating with Scheffler solar concentrators for food processing applications. In International Solar Food Processing Conference, Indore, India; 2009.
  • Reddy KS, Kumar Kvi. Solar collector field design and viability analysis of stand-alone parabolic trough power plants for Indian conditions. Energy Sustain Dev. 2012;16(4):456–470.
  • Fahmi R, Bridgwater AV, Donnison I, et al. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel. 2008;87(7):1230–1240.
  • Demirbas A. Production of gasoline and diesel fuels from bio-materials. Energ Source Part A. 2007;29(8):753–760.
  • Chintala V, Kumar S, Pandey JK, et al. Solar thermal pyrolysis of non-edible seeds to biofuels and their feasibility assessment. Energy Convers Manag. 2017;153:482–492.
  • Chintala V, Kumar S, Pandey JK. Assessment of performance, combustion and emission characteristics of a direct injection diesel engine with solar driven Jatropha biomass pyrolysed oil. Energy Convers Manag. 2017;148:611–622.
  • Al Arni S, Bosio B, Arato E. Syngas from sugarcane pyrolysis: An experimental study for fuel cell applications. Renew Energ. 2010;35(1):29–35.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.