2,572
Views
10
CrossRef citations to date
0
Altmetric
Articles

Low-ILUC-risk rapeseed biodiesel: potential and indirect GHG emission effects in Eastern Romania

, ORCID Icon, & ORCID Icon
Pages 171-186 | Received 27 Dec 2017, Accepted 28 Mar 2018, Published online: 17 May 2018

References

  • International Energy Agency. Key world energy statistics. Paris (France): OECD/IEA; 2015.
  • Chum H, Faaij A, Moreira J, et al. Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al., editors. IPCC special report on renewable energy sources and climate change mitigation. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2011. p. 209–332.
  • Searchinger T, Heimlich R, Houghton RA, et al. Use of U.S. Croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319:1238–1240.
  • Kim H, Kim S, Dale BE. Biofuels, Land use change, and greenhouse gas emissions: some unexplored variables. Environ Sci Technol. 2009;43:961–967.
  • Laborde D. Assessing the land use change consequences of European biofuel policies. Washington DC (USA): International Food Policy Institute (IFPRI); 2011.
  • Berndes G, Hansson J. Bioenergy expansion in the EU: Cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels. Energy Policy. 2007;35:5965–5979.
  • Witcover J, Yeh S, Sperling D. Policy options to address global land use change from biofuels. Energy Policy. 2013;56:63–74.
  • Delzeit R, Klepper G, Söder M. Indirect land use change (iLUC) revisited: an evaluation of current policy proposals. Kiel (Germany): Kiel Institute for the World Economy (IfW); 2017. No.: 2075.
  • European Commission. Proposal for a directive of the European parliament and of the council: amending directive 2009/28/EC. 2012.
  • California Environmental Protection Agency. Air resources board proposed regulation to implement the low carbon fuel standard volume II. 2009.
  • Elbersen B, Fritsche U, Petersen J-E, et al. Assessing the effect of stricter sustainability criteria on EU biomass crop potential. Biofuels, Bioprod Biorefin. 2013;7:173–192.
  • The European Parliament and The Council of The European Union. Directive 2009/28/EC on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official J European Union. 2009, 52, L 140, 16–62.
  • O'Hare M, Plevin RJ. Lessons from the ILUC Phenomenon. In: Khanna M, Zilberman D, editors. Handbook of bioenergy economics and policy: volume II. New York (USA): Springer New York; 2017. p. 321–344.
  • Efroymson RA, Kline KL, Angelsen A, et al. A causal analysis framework for land-use change and the potential role of bioenergy policy. Land Use Policy. 2016;59:516–527.
  • Ahlgren S, Di Lucia L. Indirect land use changes of biofuel production – a review of modelling efforts and policy developments in the European Union. Biotechnol Biofuels. 2014;7:35.
  • Taheripour F, Tyner WE. Induced land use emissions due to first and second generation biofuels and uncertainty in land use emission factors. Econ Res Int. 2013;2013:1–12.
  • Hertel T, Tyner W, Birur D. The global impacts of biofuel mandates. Energy J. 2010;31:75–100.
  • Wicke B, Verweij P, van Meijl H, et al. Indirect land use change: review of existing models and strategies for mitigation. Biofuels. 2012;3:87–100.
  • Plevin RJ, Beckman J, Golub AA, et al. Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change. Environ Sci Technol. 2015;49(5):2656–2664.
  • Verstegen JA, van der Hilst F, Woltjer G, et al. What can and can't we say about indirect land-use change in Brazil using an integrated economic - land-use change model ? GCB Bioenergy. 2016;8:561–578.
  • Delzeit R, Klepper G, Söder M. An evaluation of approaches for quantifying emissions from indirect land use change. Kiel (Germany): Kiel Institute for the World Economy (IfW); 2016. No.: 2035.
  • Dunkelberg E. A case-study approach to quantifying indirect land-use change due to expanding biofuels feedstock cultivation [dissertation]. Berlin (Germany): Technische Universität Berlin; 2014.
  • The European Parliament and The Council of The European Union. Directive (EU) 2015/1513 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources. Official J European Union. 2015,58,L 239:1–62.
  • Peters D, Spöttle M, Hähl T, et al. Methodologies for the identification and certification of Low ILUC risk biofuels. Utrecht (Netherlands): Ecofys; 2016.
  • Wicke B, ,Brinkman M, Gerssen-Gondelach S, et al. ILUC Prevention strategies for sustainable biofuels: synthesis report from the ILUC prevention project. Utrecht (Netherlands): Copernicus Institute of Sustainable Development; 2015.
  • RSB. RSB Low iLUC Risk biomass criteria and compliance indicators. Geneva (Switzerland): Roundtable on Sustainable Biomaterials; 2015.
  • El Takriti S, Malins C, Searle S. Understanding options for ILUC mitigation. The ICCT Working Paper. Washington DC (USA): International Council on Clean Transportation; 2016. ( Working paper 2016-23).
  • Brinkman MLJ, Wicke B, Gerssen-Gondelach SJ, et al. Methodology for assessing and quantifying ILUC prevention options. Utrecht (the Netherlands): Copernicus Institute of Sustinable Development; 2015.
  • Brinkman MLJ, Wicke B, Faaij APC. Low-ILUC-risk ethanol from Hungarian maize. Biomass Bioenergy. 2017;99:57–68.
  • Gerssen-Gondelach SJ, Wicke B, Borzęcka-Walker M, et al. Bioethanol potential from miscanthus with low ILUC risk in the province of Lublin, Poland. GCB Bioenergy. 2016;8:909–924.
  • Van der Laan C, Wicke B, Verweij PA, et al. Mitigation of unwanted direct and indirect land-use change - an integrated approach illustrated for palm oil, pulpwood, rubber and rice production in North and East Kalimantan, Indonesia. GCB Bioenergy. 2017;9:429–444.
  • Gerssen-Gondelach SJ, Wicke B, Faaij APC. GHG emissions and other environmental impacts of indirect land use change mitigation. GCB Bioenergy. 2017;9:725–742.
  • Hoefnagels R, Smeets E, Faaij A. Greenhouse gas footprints of different biofuel production systems. Renew Sustain Energy Rev. 2010;14:1661–1694.
  • Valin H, Peters D, van den Berg M, et al. The land use change impact of biofuels consumed in the EU Quantification of area and greenhouse gas impacts. Utrecht (The Netherlands): Ecoys; 2015.
  • EurObsev'ER. Biofuels barometer. 2014.
  • Kluts I, Wicke B, Leemans R, et al. Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renew Sustain Energy Rev. 2017;69:719–734.
  • Romania. National renewable energy action plan (NREAP). Bucharest (Romania): Government of Romania; 2010.
  • INSSE Institut National de Satistica - National Institute of Statistics. INSSE - Statistical DB [Internet]. 2017 [cited 2017 Dec 7]. Available from: https://statistici.insse.ro/shop/?lang=en.
  • van Dam J, Faaij APC, Lewandowski I, et al. Options of biofuel trade from Central and Eastern to Western European countries. Biomass Bioenergy. 2009;33:728–744.
  • Cargill. Cargill and TTS investment will double the storage capacity of grain terminal Canopus Star JV at Constanta [Internet]. 2013 [cited 2015 Jan 28]. Available from: http://www.cargill.ro/en/press-center/NA3075937.jsp.
  • Food and Agriculture Organisation. FAOSTAT [Internet]. 2016 [cited 2016 Dec 7]. Available from: http://faostat.fao.org.
  • Brinkman MLJ, Pisca I, Wicke B, et al. ILUC prevention strategies for sustainable biofuels: Case study on the biodiesel production potential from rapeseed with low ILUC risk in Eastern Romania. Utrecht (Netherlands): Copernicus Institute of Sustainable Development; 2015.
  • National Institute of Research and Development in Soil Science Agrochemistry and the Environment, ICPA. On NUTS 3 classified areas in Romania where the typical greenhouse gas emissions from cultivation of agricultural raw materials can be expected to be lower than or equal to the emissions reported under the heading ’Disaggregated default values for cultivation’ in part D of Annex V to Directive 2009/28/EC. Bucharest; 2010.
  • European Commission. Commission Decision of 10 June 2010 on guidelines for the calculation of land carbon stocks for the purpose of Annex V to Directive 2009/28/EC. Official J European Union. 2010;53,L 151:19–41, .
  • Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture. Proce Natl Acad Sci. 2011;108:20260–20264.
  • Van Noordwijk M, Khasanah N, Dewi S. Can intensification reduce emission intensity of biofuel through optimized fertilizer use? Theory and the case of oil palm in Indonesia. GCB Bioenergy. 2017;9:940–952.
  • Auernhammer H. Precision farming - The environmental challenge. Comput Electron Agric. 2001;30:31–43.
  • Smith P, Martino D, Cai Z, et al. Greenhouse gas mitigation in agriculture. Philos Trans Royal Soc B: Biol Sci. 2008;363:789–813.
  • Garnett T. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? A comment. Food Policy. 2012;37:463–466.
  • Halmajan HV, Nastase D, Vasile G, et al. Fertilisation practices in oilseed rape in Romania. Bull Univ Agric Sci Vet Med Cluj Napoca. 2007;63:69–72.
  • Gina V, Halmajan HV, Ciuboata G. The influence of application timing of nitrogen fertilisers on yield components in oilseed rape. Bull Univ Agric Sci Vet Med Cluj Napoca. 2007;63: 321.
  • World Bank. Indicators agriculture & rural development [Internet]. 2015 [cited 2015 Jan 31]. Available from: http://data.worldbank.org/indicator.
  • Eurostat. Eurostat [Internet]. 2015 [cited 2015 Jan 31]. Available from: http://epp.eurostat.ec.europa.eu/.
  • IIASA, FAO. Global Agro-ecological zones (GAEZ v3.0) [Internet]. 2012 [cited 2014 Oct 1]. Available from: http://www.gaez.iiasa.ac.at/.
  • Eurostat. Glossary:Livestock unit (LSU) [Internet]. 2013 [cited 2016 Jun 24]. Available from: http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Livestock_unit_(LSU).
  • Gerssen-Gondelach SJ, Lauwerijssen RBG, Havlík P, et al. Intensification pathways for beef and dairy cattle production systems: Impacts on GHG emissions, land occupation and land use change. Agric, Ecosyst Environ. 2017;240:135–147.
  • Biograce. Biograce GHG calcualtion tool version 4c [Internet]. 2011 [cited 2014 Dec 12]. Available from: http://biograce.net.
  • Neeft J. BioGrace calculation rules Version 4c. 2012.
  • Rosas JF. Fertilizer use by crop at the country level (1990–2010). Card Working Papers. Ames (IA, USA): 2012. Report No.: 555.
  • Burney JA, Davis SJ, Lobell DB. Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci. 2010;107:12052–12057.
  • Cardoso AS, Berndt A, Leytem A, et al. Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use. Agric Syst. 2016;143:86–96.
  • Cohn AS, Mosnier A, Havlik P, et al. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proc Natl Acad Sci. 2014;111:7236–7241.
  • Lywood W, Pinkney J. An outlook on EU biofuel production and its implications for the animal feed industry. In: Makkar H, editor. Biofuel co-products as livestock feed - opportunities and challenges. Rome (Italy): Food and Agriculture Organisation; 2012. p. 13–34.
  • COMTRADE. International trade statistics database [Internet]. 2016 [cited 2016 Dec 7]. Available from: https://comtrade.un.org/.
  • Fischer G, Nachtergaele FO, Prieler S, et al. Global agro-ecological zones (GAEZ): model documentation. Laxenburg (Austria) and Rome (Italy): IIASA/FAO; 2012.
  • Noblet J, Fortune H, Dupire C, et al. Digestible, metabolizable and net energy values of 13 feedstuffs for growing pigs: effect of energy system. Anim Feed Sci Technol. 1993;42:131–149.
  • de Wit M, Londo M, Faaij A. Productivity developments in European agriculture: relations to and opportunities for biomass production. Renew Sustain Energy Rev. 2011;15:2397–2412.
  • Verchot L, Krug T, Lasco R, et al. Chapter 6: grassland. In: Eggleston H, Buendia L, Miwa K, et al., editors. IPCC guidelines for national greenhouse gas inventories. Volume 4: agriculture, forestry and other land use. Hayama (Japan): Intergovernmental Panel on Climate Change (IPCC) and Institute for Global Environmental Strategies (IGES); 2006. p. 6.1–6.49.
  • Lasco R, Ogle S, Raison J, et al. Chapter 5: cropland. In: Eggleston HS, Buendia L, Miwa K, et al., editors. IPCC guidelines for national greenhouse gas inventories. Volume 4: agriculture, forestry and other land use. Hayama (Japan): The Intergovernmental Panel on Climate Change (IPCC) and Institute for Environmental Strategies (IGES); 2006. p. 5.1–5.66.
  • Aalde H, Gonzalez P, Gytarsky M, et al. Chapter 2: generic methodologies applicable to multiple land-use categories. In: Eggleston HS, Buendia L, Miwa K, et al., editors. IPCC guidelines for national greenhouse gas inventoriesolume 4: agriculture, forestry and other land use. Hayama (Japan): The Intergovernmental Panel on Climate Change (IPCC) and Institute for Environmental Strategies (IGES); 2006. p. 2.1–2.59.
  • Joint Research Centre. Soil projects >support to renewable energy directive [Internet]. 2010 [cited 2017 Nov 15]. Available from: http://eusoils.jrc.ec.europa.eu/projects/RenewableEnergy/.
  • Weightman RM, Cottrill BR, Wiltshire JJJ, et al. Opportunities for avoidance of land-use change through substitution of soya bean meal and cereals in European livestock diets with bioethanol coproducts. GCB Bioenergy. 2011;3:158–170.
  • FEDIOL. Annual statistics [Internet]. 2014 [cited 2014 May 16]. Available from: http://www.fediol.org/web/annual statistics/1011306087/list1187970189/f1.html.
  • Lywood W, Pinkney J, Cockerill S. Impact of protein concentrate coproducts on net land requirement for European biofuel production. GCB Bioenergy. 2009;1:346–359.
  • Mogensen L, Kristensen T, Nguyen TLT, et al. Method for calculating carbon footprint of cattle feeds - Including contribution from soil carbon changes and use of cattle manure. J Cleaner Prod. 2014;73:40–51.
  • Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy. 2004;26:361–375.
  • Vidican G. Assessing land reallocation decisions during transition in Romania. Land Use Policy. 2009;26:1080–1089.
  • Schierhorn F, Müller D, Beringer T, et al. Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Global Biogeochem Cycles. 2013;27:1175–1185.
  • Allen B, Kretschmer B, Baldock D, et al. Space for energy crops – assessing the potential contribution to Europe's energy future. London (UK): Institute for European Environmental Policy; 2014.
  • INSSE. Recensământul general agricol 2010 (General agricultural census). Bucharest (Romania):Institutul National de Statistică; 2011.
  • Pehnelt G, Vietze C. Quo vadis european biofuel policy: the case of rapeseed biodiesel. Jena Economic Reserach Papers. Jena (Germany): Friedrich Schiller University and the Max Planck Institute of Economics; 2013. Report No.: 2013–015.
  • Gerssen-Gondelach S, Wicke B, Faaij A. Assessment of driving factors for yield and productivity developments in crop and cattle production as key to increasing sustainable biomass potentials. Food Energy Secur. 2015;4:36–75.
  • Iagăr E, Gheorghe F, Dima I, et al. Efectivele de Animale si Productia Animală In Anul 2015. Bucahrest (Romania):Institutul National de Statistică; 2016.