250
Views
10
CrossRef citations to date
0
Altmetric
Articles

Weak base pretreatment on coconut coir fibers for ethanol production using a simultaneous saccharification and fermentation process

ORCID Icon, ORCID Icon & ORCID Icon
Pages 259-265 | Received 13 Jan 2018, Accepted 31 Mar 2018, Published online: 17 May 2018

References

  • Bhatt SM,Shilpa. Lignocellulosic feedstock conversion, inhibitor detoxification and cellulosic hydrolysis – a review. Biofuels. 2014;5(6):633–649. https://doi.org/10.1080/17597269.2014.1003702.
  • Fukuda H, Kondo A, Tamalampudi S. Bioenergy: sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochem Eng J. 2009;44(1):2–12. https://doi.org/10.1016/j.bej.2008.11.016.
  • Chuck CJ, Santomauro F, Sargeant LA, et al. Liquid transport fuels from microbial yeasts – current and future perspectives. Biofuels. 2014;5(3):293–311. https://doi.org/10.1080/17597269.2014.913905.
  • van Dam JEG, van den Oever MJA, Keijsers ERP, et al. Process for production of high density/high performance binderless boards from whole coconut husk: Part 2: coconut husk morphology, composition and properties. Ind Crops Prod. 2006;24(2):96–104. https://doi.org/10.1016/j.indcrop.2005.03.003.
  • Oke MA, Annuar MSM, Simarani K. Mixed feedstock approach to lignocellulosic ethanol production—prospects and limitations. Bioenergy Res. 2016;9(4):1189–1203. doi: 10.1007/s12155-016-9765-8.
  • Gonçalves FA, Ruiz HA, Nogueira CdC, et al. Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel. 2014;131:66–76. https://doi.org/10.1016/j.fuel.2014.04.021.
  • Gonçalves FA, Ruiz HA, dos Santos ES, et al. Bioethanol production from coconuts and cactus pretreated by autohydrolysis. Ind Crops Prod. 2015;77:1–12. https://doi.org/10.1016/j.indcrop.2015.06.041.
  • Gonçalves FA, Ruiz HA, Silvino dos Santos E, et al. Bioethanol production by Saccharomyces cerevisiae , Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renewable Energy. 2016;94:353–365. https://doi.org/10.1016/j.renene.2016.03.045.
  • Fatmawati A, Agustriyanto R. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir. International Conference of Chemical and Material Engineering (ICCME): Green Technology for Sustainable Chemical Products and Processes; 2015. AIP Publishing. p. 1699. https://doi.org/10.1063/1.4938297.
  • Vaithanomsat P, Apiwatanapiwat W, Chumchuent N, et al. The potential of coconut husk utilization for bioethanol production. Kasetsart J Nat Sci. 2011;45:159–164.
  • Cabral MMS, Abud AKdS, Silva CEdF, et al. Bioethanol production from coconut husk fiber. Ciência Rural. 2016;46(10):1872–1877. https://doi.org/10.1590/0103-8478cr20151331.
  • Subhedar PB, Ray P, Gogate PR. Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation. Ultrason Sonochem. 2018;40(Part B):140–150. https://doi.org/10.1016/j.ultsonch.2017.01.030.
  • Xu E, Sun J, Zhu X, et al. Liquefaction of coconut fibers in alkaline hot-compressed water. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2016;38(12):1750–1755. https://doi.org/10.1080/15567036.2014.994792.
  • Sangian HF, Kristian J, Rahma S, et al. Preparation of reducing sugar hydrolyzed from high-lignin coconut coir dust pretreated by the recycled ionic liquid [mmim][dmp] and combination with alkaline. Bulletin of Chemical Reaction Engineering & Catalysis. 2015;10(1):8–22. https://doi.org/10.9767/bcrec.10.1.7058.8-22.
  • Sangian HF, Widjaja A. Effect of pretreatment method on structural changes of coconut coir dust. Bioresources. 2017;12(4):8030–8046. doi:10.15376/biores.12.4.8030-8046.
  • Ebrahimi M, Caparanga AR, Ordono EE, et al. Evaluation of organosolv pretreatment on the enzymatic digestibility of coconut coir fibers and bioethanol production via simultaneous saccharification and fermentation. Renewable Energy. 2017;109(Supplement C):41–48. https://doi.org/10.1016/j.renene.2017.03.011.
  • Ahmed MA, Kim I, Kim G-Y, et al. Ammonium carbonate as a catalyst for lignocellulose pretreatment and a nitrogen source for fermentation. Sustainable Energy Technologies and Assessments. 2016;16:64–68. https://doi.org/10.1016/j.seta.2016.05.002.
  • Liguori R, Ventorino V, Pepe O, et al. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products. Appl Microbiol Biotechnol. 2016;100:597–611. doi: 10.1007/s00253-015-7125-9.
  • Adney B, Baker J. Measurement of cellulase activities. Laboratory Analytical Procedure (LAP) TP-510-42628, Golden, CO: National Renewable Energy Laboratory (NREL) Colorado; 1996;6:1–11.
  • Selig M, Weiss N, Ji Y. Enzymatic saccharification of lignocellulosic biomass: laboratory analytical procedure (LAP). Golden, CO: National Renewable Energy Laboratory (NREL); 2008.
  • Dowe N, McMillan J. SSF experimental protocols: lignocellulosic biomass hydrolysis and fermentation. Analytical Procedures (LAP ) TP-510-42630, National Renewable Energy Laboratory (NREL) Colorado; 2001.
  • Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass. Golden, CO: Laboratory Analytical Procedures (LAP), National Renewable Energy Laboratory (NREL); 2012. p. 1–15.
  • Hyman D, Sluiter A, Crocker D, et al. Determination of acid soluble lignin concentration curve by UV-Vis spectroscopy. Analytical Procedures (LAP ) National Renewable Energy Laboratory (NREL) Colorado; 2008.
  • Ehrman T. Determination of acid-soluble lignin in biomass. Golden, CO: National Renewable Energy Laboratory (NREL) Analytical Procedures (LAP), Technical Report NREL-LAP-004; 1996.
  • Modenbach AA, Nokes SE. The use of high-solids loadings in biomass pretreatment—a review. Biotechnol Bioeng. 2012;109(6):1430–1442. doi: 10.1002/bit.24464.
  • Gao J, Yang X, Wan J, et al. Delignification kinetics of corn stover with aqueous ammonia soaking pretreatment. BioResources. 2016;11:2403–2416. doi:10.15376/biores.11.1.2403-2416.
  • Yang L, Cao J, Jin Y, et al. Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw. Bioresour Technol. 2012;124(Supplement C):283–291. https://doi.org/10.1016/j.biortech.2012.08.041.
  • Kim JS, Lee YY, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol. 2016;199:42–48. doi: 10.1016/j.biortech.2015.08.085.
  • Kim I, Lee B, Song D, et al. Effects of ammonium carbonate pretreatment on the enzymatic digestibility and structural features of rice straw. Bioresour Technol. 2014;166:353–357. doi: 10.1016/j.biortech.2014.04.101.
  • Ebrahimi M, Caparanga AR, Ordono EE, et al. Effect of ammonium carbonate pretreatment on the enzymatic digestibility, structural characteristics of rice husk and bioethanol production via simultaneous saccharification and fermentation process with Saccharomyces cerevisiae Hansen 2055. Ind Crops Prod. 2017;101(Supplement C):84–91. https://doi.org/10.1016/j.indcrop.2017.03.006.
  • Zhu Z, Rezende CA, Simister R, et al. Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass Bioenergy. 2016;93:269–278. doi: 10.1016/j.biombioe.2016.06.017.
  • Ko JK, Bak JS, Jung MW, et al. Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour Technol. 2009;100(19):4374–4380. https://doi.org/10.1016/j.biortech.2009.04.026.
  • Zhao C, Ding W, Chen F, et al. Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility. Bioresour Technol. 2014;155(Supplement C):34–40. https://doi.org/10.1016/j.biortech.2013.12.091.
  • Cai J, Wu W, Liu R, et al. A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chemistry. 2013;15(5):1331–1340. doi: 10.1039/C3GC36958G.
  • Lv G-j, Wu S-B, Lou R. Kinetic study for the thermal decomposition of hemicellulose isolated from corn stalk. BioResources. 2010;5(2):1281–1291. doi: 10.15376/biores.5.2.1281-1291.
  • Ebrahimi M, Villaflores OB, Ordono EE, et al. Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk on the enzymatic digestibility, structural characteristics, and bioethanol production. Bioresour Technol. 2017;228:264–271. https://doi.org/10.1016/j.biortech.2016.12.106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.