271
Views
12
CrossRef citations to date
0
Altmetric
Article

Changes in biochemical composition and fatty acid accumulation of Nannochloropsis oculata in response to different iron concentrations

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-7 | Received 01 Nov 2017, Accepted 10 May 2018, Published online: 04 Oct 2018

References

  • Chisti Y. Biodiesel from microalgae. Biotechnol. 2007;25:294–306.
  • Rodolfi L, Zittelli GC, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102:100–112.
  • Huang X, Wei L, Huang Z, et al. Effect of high ferric ion concentrations on total lipids and lipid characteristics of Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis, J Appl Phycol. 2013;26:105–114.
  • Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances. Plant J. 2008;54:621–639.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. J Renew Sustain Energy. 2010;14:217–232.
  • Ho SH, Chen CY, Chang JS. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol. 2012;113:244–252.
  • Lang X, Dalai AK, Bakhshi NN, et al. Preparation and characterization of bio-diesels from various bio-oils. Bioresour Technol. 2001;80:53–62.
  • Subhadra B, Edwards M. An integrated renewable energy park approach for algal biofuel production in USA. Energy Policy. 2010;38:4897–4902.
  • Li Y, Lian S, Tong D, et al. One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst. Appl Energy. 2011;88:3313–3317.
  • Takagi M, Watanabe K, Yamaberi K, et al. Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl Microbiol Biotechnol. 2000;54:112–111.
  • Zhila N, Kalacheva G, Volova T. Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. J Appl Phycol. 2011;23:47–52.
  • Lynn SG, Kilham SS, Kreeger DA, et al. Effect of nutrient availability on the biochemical and elemental stoichiometry in freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J Phycol. 2000;36:510–522.
  • Mandal S, Mallick, N. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol. 2009;84:281–291.
  • Rao AR, Dayananda C, Sarada R, et al. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol. 2007;98:560–564.
  • Takagi M, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng. 2006;101:223–226.
  • Ruangsomboon S, Ganmanee M, Choochote S. Effects of different nitrogen, phosphorus, and Fe concentrations and salinity on lipid production in newly isolated strain of the tropical green microalga, Scenedesmus dimorphus. J Appl Phycol. 2013;25:867–874.
  • Liu ZY, Wang GC, Zhou BC. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol. 2008;99:4717–4722.
  • Roncarati, A, Meluzzi, A, Acciarri, S, et al. Fatty acid composition of different microalgae strains (Nannochloropsis sp, Nannochloropsis oculata (Droop) Hibberd, Nannochloris atomus Butcher and Isochrysis sp.) according to the culture phase and the carbon dioxide concentration. J World Aquacult Soc. 2004;35:401–411.
  • Lamas M, Soares MJ, Soares MS. Oliveira MM. Effects of cadmium on Euglena gracilis membrane lipids. Braz J Med Biol Res. 1996;29:941–948.
  • Einicker-Lamas M, Mezian GA, Fernandes TB, et al. Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ Pollut. 2002;120:779–86.
  • Rizwan M, Mujtaba G, Lee K. Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta. J Biotechnol Biopro Eng. 2017;22:68–75.
  • Hoffmann M, Marxen K, Schulz R, et al. TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments. Marine Drugs. 2010;8:2526–2545.
  • Guillard RRL, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol. 1962;8:229–239.
  • Zhu CJ, Lee YK. Determination of biomass dry weight of marine microalgae. J Appl Phycol. 1997;9:189–194.
  • Jespersen AM, Christoffersen K. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Arch Hydrobiol. 1987;109:445–454.
  • AOAC. Official methods of analysis of AOAC International. 18th ed. Gaithersburg: AOAC International; 2005.
  • Meng Y, Jiang J, Wang H, et al. The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes. Bioresour Technol. 2015;179:483–489.
  • Dragone G, Fernandes BD, Abreu AP, et al. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy. 2011;88:3331–3335.
  • Procházková G, Brányiková I, Zachleder V, et al. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J Appl Phycol. 2014;26:1359–1377.
  • La-Fontaine S, Quinn JM, Nakamoto SS, et al. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryot Cell 2002;1:736–757.
  • Antal TK, Lindblad P. Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC6803 during dark incubation with methane or at various extracellular pH. J Ferment Bioeng. 2005;98:114–120.
  • Glass JB, Wolfe-Simon F, Anbar AD. Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology. 2009;7:100–123.
  • Chong W, Kong HN, Wang XZ, et al. Effects of iron on growth and intracellular chemical contents of Microcystis aeruginosa. Biomed Environ Sci. 2010;23:48–52.
  • Oijen TV, Van Leeuwe M, Gieskes WWC, et al. Effects of iron limitation on photosynthesis and carbohydrate metabolism in the Antarctic diatom Chartoceros brevis (Bacillariophyceae). Eur J Phycol. 2004;39:161–171.
  • Marschner H. Mineral nutrition of higher plants. London: Academic Press; 1986.
  • Spiller SC, Castelfranco AM, Castelfranco PA. Effects of iron and oxygen on chlorophyll biosynthesis. I. In vivo observations on iron and oxygen deficient plants. Plant Physiol. 1982;69:107–111.
  • Geider RJ, La Roche J. The role of iron in phytoplankton photosynthesis, and the potential for iron limitation of primary productivity in the sea. Mini Rev. Photosyn Res. 1994;39:275–301.
  • Gervais F, Riebesell U, Gorbunov MY. Changes in size-fractionated primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone. Limnol Oceanogr. 2002;47:1324–1335.
  • Hutchins DA. Iron and the marine phytoplankton community. Prog Phycol Res. 2000;11:1–49.
  • Tognetti VB, Zurbriggen MD, Morandi EN, et al. Enhanced plant tolerance to iron starvation by functional substitution of chloroplast ferredoxin with a bacterial flavodoxin. Proc Natl Acad Sci USA. 2007;104:11495–11500.
  • Xing W, Huang WM, Li DH, et al. Effects of iron on growth, pigment content, photosystem ii efficiency, and Siderophores production of Microcystis aeruginosa and Microcystis wesenbergii. Curr Microbiol. 2007;55:94–98.
  • Cai ZP, Huang WW, Duan SS. Iron concentration-induced changes in growth and biochemical compositions of marine diatom Phaeodactylum tricornutum (Bacillariophyceae). Ecol Environ. 2008;174:1327–1333.
  • Li D, Cong W, Cai Z, et al. Effect of iron stress, light stress and nitrogen source on physiological aspects of marine red tide alga. J Plant Nutr. 2004;27:29–41.
  • Prasad MNV, Strzalka K. Impact of heavy metals on photosynthesis. In: Prasad MNV, Hagemeyer J, editors. Heavy metal stress in plants: from molecules to ecosystems. Berlin-Heidelberg: Springer Verlag; 1999.
  • Keenan C, Goth-Goldstein R, Lucas D, et al. Oxidative stress induced by zero-valent iron nanoparticles and Fe (II) in human bronchial epithelial cells. Environ Sci Technol. 2009;43:4555–4560.
  • Sharma P, Jha AB, Dubey RS, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012. Available from http://dx.doi.org/10.1155/2012/217037
  • Imsande J. Iron, sulfur, and chlorophyll deficiencies: a need for an integrative approach in plant physiology. Physiol Plant. 1998;103:139–144.
  • Dean A, Sigee D, Estrada B, et al. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol. 2010;101:4499–4507.
  • Wan M, Jin X, Xia J, et al. The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. Appl Microbiol Biotechnol. 2014;98:9473–9481.
  • Sun X, Cao Y, Xu H, et al. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol. 2014;155:204–212.
  • Singh P, Guldhe A, Kumari S, et al. Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem Eng J. 2015;94:22–29.
  • Andaluz S, Lopez-Millan AF, Peleato, ML, et al. Increases in phosphoenolpyruvate carboxylase activity in iron-deficient sugar beet roots: analysis of spatial localization and post-translational modification. Plant Soil 2002;241:43–48.
  • Doubnerová V, Ryšlavá H. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci. 2011;180:575–583.
  • Izui K, Matsumura H, Furumoto T, et al. Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol. 2004;55:69–84.
  • Courchesne NMD, Parisien A, Wang B, et al. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol. 2009;141:31–41.
  • Botham PA, Ratledge C. A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous micro-organisms. J Gen Microbiol. 1979;114:361–375.
  • Wynn JP, Hamid AA, Li Y, et al. Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiol. 2001;147:2857–2864.
  • Wynn JP, Hamid AA, Ratledge C. The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiol. 1999;145:1911–1917.
  • Yang ZK, Niu YF, Ma YH, et al. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels. 2013;6:1–14.
  • Lin Q, Gu N, Lin JD. Effect of ferric ion on nitrogen consumption, biomass and oil accumulation of a Scenedesmus rubescenslike microalga. Bioresour Technol. 2012;112:242–247.
  • Knothe G, Van Gerpen J, Krahl J. The biodiesel handbook. Champaign, Illinois: AOCS Press; 2005.
  • Knothe G. Structure indices in FA chemistry. How relevant is the iodine value? J Am Oil Chem Soc. 2002;9:847–853.
  • Ramos MJ, Fernández CM, Casas Rodríguez, A, et al. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol. 2009;100:261–268.
  • Schneider JC, Livne A, Sukenik A, et al. A mutant of Nannochloropsis deficient in Eicosapentaenoic acid production. Phytochemistry. 1995;40:807–814.
  • Servel MO, Claire C, Derrien A, et al. Fatty acid composition of some marine microalgae. Phytochemistry. 1994;36:691–693.
  • Iturbe-Ormaetxe I, Moran F, Arrese-Igor C, et al. Activated oxygen and antioxidant defences in iron-deficient pea plants. Plant Cell Environ. 1995;18:421–429.
  • Tewari RK, Kumar P, Neet U, et al. Signs of oxidative stress in the chlorotic leaves of iron starved plants. Plant Sci. 2005;169:1037–1045.
  • Sharma P, Dubey RS. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. J Plant Growth Regul. 2005;46:209–221.
  • Mishra S, Jha AB, Dubey RS. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma. 2011;248:565–577.
  • Mittelbach M. Diesel fuel derived from vegetable oils, VI: specifications and quality control of biodiesel. Bioresour Technol. 1996;56:7–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.