88
Views
1
CrossRef citations to date
0
Altmetric
Article

Comparing bioethanol production using buttonwood (Conocarpus erectus) and date palm (Phoenix dactylifera) leaves as raw material

, & ORCID Icon
Pages 769-775 | Received 13 Jun 2018, Accepted 15 Sep 2018, Published online: 24 Jan 2019

References

  • Naik SN, Goud VV, Rout PK, et al. Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev. 2010;14:578–597.
  • Smith J, Popp M, Luttge U, et al. Eeophysiology of xerophytie and halophytie vegetation of a eoastal alluvial plain in northern Venezuela. New Phytol. 1989;111:293–307.
  • Bendahou A, Habibi Y, Kaddami H, et al. Physico-chemical characterization of palm from phoenix dactylifera–L, preparation of cellulose whiskers and natural rubber–based nanocomposites. J Biobased Mater Bioenergy. 3:81–90.
  • Abdel-Aal M. Effect of cooking time, active alkali concentration and refining process on the pulping and papermaking properties of buttonwood residues (Conocarpus erectus L.). World Appl Sci J. 27: 1–9.
  • Ali Y. Use of date palm leaves compost as a substitution to peatmoss. Am J Plant Physiol. 2008;3:131–136.
  • Chao CT, Krueger RR. The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. HortScience 2007;42:1077–1082.
  • Mood, SH, Golfeshan, AH, Tabatabaei, M, et al. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy. Rev. 2013;27: 77–93.
  • Pérez J, Munoz-Dorado J, de la Rubia T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 2002;5:53–63.
  • Schaeffer AB, Fulton MD A simplified method of staining endospores. Science 1990;77:194–194.
  • Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 2013;41: e1.
  • Kasana RC, Salwan R, Dhar H, et al. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol. 2008;57:503–507.
  • Hendricks CW, Doyle JD, Hugley B. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl Environ Microbiol. 1995;61:2016–2019.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–428.
  • Vijayaraghavan P, Vincent SGP. Cow dung as a novel, inexpensive substrate for the production of a halo-tolerant alkaline protease by Halomonas sp. PV1 for eco-friendly applications. Biochem Eng J. 2012;69:57–60.
  • Gibbons WR,Westby CA (1986) Effects of inoculum size on solid-phase fermentation of fodder beets for fuel ethanol production. J Appl Environ Microbiol 52: 960–962.
  • Zaky AS, Pensupa N, Andrade-Eiroa Á, et al. A new HPLC method for simultaneously measuring chloride, sugars, organic acids and alcohols in food samples. J Food Compos Anal 2017;56:25–33.
  • Balasubramanian N, Toubarro D, Teixeira M, et al. Purification and biochemical characterization of a novel thermo-stable carboxymethyl cellulase from Azorean isolate Bacillus mycoides S122C. Appl Biochem Biotechnol. 2012;168:2191–2204.
  • Balasubramanian N, Simões N. Bacillus pumilus S124A carboxymethyl cellulase; a thermo stable enzyme with a wide substrate spectrum utility. Int J Biol Macromol 2014;67:132–139.
  • Rastogi G, Bhalla A, Adhikari A, et al. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol. 2010;101:8798–8806.
  • Krishna C. Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour Technol. 1999;69:231–239.
  • Ariffin H, Abdullah N, Umi Kalsom M, et al. Production and characterization of cellulase by Bacillus pumilus EB3. Int J Eng Technol. 2006;3:47–53.
  • Dhillon N, Chhibber S, Saxena M, et al. A constitutive endoglucanase (CMCase) from Bacillus licheniformis-1. Biotechnol Lett. 1985;7:695–697.
  • Khan F, Husaini A. Enhancing a-amylase and cellulase in vivo enzyme expressions on sago pith residue using Bacilllus amyloliquefaciens UMAS 1002. Biotechnology 2006;5:391–403.
  • Dong J, Hong Y, Shao Z, , et al. Molecular cloning, purification, and characterization of a novel, acidic, pH-stable endoglucanase from Martelella mediterranea. J Microbiol. 2010;48:393–398.
  • Christakopoulos P, Hatzinikolaou DG, Fountoukidis G, et al. Purification and Mode of Action of an Alkali-Resistant Endo-1, 4-β-glucanase fromBacillus pumilus. Arch Biochem Biophys. 1999;364:61–66.
  • Mawadza C, Hatti-Kaul R, Zvauya R, et al. Purification and characterization of cellulases produced by two Bacillus strains. J Biotechnol. 2000;83:177–187.
  • Wang G, Zhang X, Wang L, et al. The activity and kinetic properties of cellulases in substrates containing metal ions and acid radicals. Adv Biol Chem. 2012;2:390–395.
  • Kui, H, Luo, H, Shi, P, et al. Gene cloning, expression, and characterization of a thermostable xylanase from Nesterenkonia xinjiangensis CCTCC AA001025. Appl Biochem Biotechnol. 2010;162:953–965.
  • Karnchanatat A, Petsom A, Sangvanich P, et al. Purification and biochemical characterization of an extracellular β-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.: Fr.) Rehm. FEMS Microbiol Lett. 2007;270:162–170.
  • Ibrahim ASS, El-diwany AI. Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust J Basic Appl Sci. 2007;1:473–478.
  • Acharya, S,Chaudhary, A. Optimization of fermentation conditions for cellulases production by Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from Indian hot spring. Braz Arch Biol Technol. 2012;55:497–503.
  • Heck, JX, Hertz, PF, et al. Cellulase and xylanase productions by isolated Amazon Bacillus strains using soybean industrial residue based solid-state cultivation. Braz J Microbiol. 2002;33:213–218.
  • Gaur R, Tiwari S. Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol. 2015;15:19.
  • Ladeira SA, Cruz E, Delatorre AB, et al. Cellulase production by thermophilic Bacillus sp: SMIA-2 and its detergent compatibility. Electron J Biotechnol. 2015;18:110–115.
  • Börjesson J, Engqvist M, Sipos B, et al. Effect of poly (ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose. Enzyme Microb Technol 2007;41:186–195.
  • Qing Q, Yang B, Wyman CE. Impact of surfactants on pretreatment of corn stover. Bioresour Technol. 2010;101:5941–5951.
  • Jackson LA, Shadle GL, Zhou R, et al. (2008). Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. Bioenergy Res. 1:180–192.
  • Gupta R, Khasa YP, Kuhad RC. Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydr Polym. 2011;84:1103–1109.
  • Ouyang J, Li Z, Li X, et al. Enhanced enzymatic conversion and glucose production via two-step enzymatic hydrolysis of corncob residue from xylo-oligosaccharides producer's waste. BioResources. 2009;4:1586–1599.
  • Gao W, Xiang Z, Chen K, et al. Effect of depth beating on the fiber properties and enzymatic saccharification efficiency of softwood kraft pulp. Carbohydr Polym. 2015;127:400–406.
  • Rabelo S, Fonseca NA, Andrade R, et al. Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass Bioenergy 2011;35: 2600–2607.
  • Abd-Alla MH, El-Enany A-WE. Production of acetone-butanol-ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis. Biomass Bioenergy. 2012;42:172–178.
  • Tomás-Pejó E, Oliva J, González A, et al. Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. 2009;Fuel 88: 2142–2147.
  • Maddipati P, Atiyeh HK, Bellmer DD, et al. Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour Technol. 2011;102:6494–6501.
  • Lee SJ, Warnick TA, Pattathil S, et al. Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality. Biotechnol Biofuels 2012;5:1–5.
  • Xie B-T, Liu Z-Y, Tian L, et al. Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions. Bioresour Technol. 2015;177:302–307.
  • Gomaa, MA, Al-Kindi, A, Abed, RM. Desert stream phototrophic mats: a promising source for biofuel production. Biofuels. 2017;1–11.
  • Magalhães KT, Pereira GVdM, Campos CR, et al. Brazilian kefir: structure, microbial communities and chemical composition. Braz J Microbiol. 2011;42:693–702.
  • Peña-Serna C, Castro-Gil C, Peláez-Jaramillo CA. Evaluation of ethanol production from two recombinant and a commercial strains of Saccharomyces cerevisiae (Fungi: Ascomycota) in sugar-cane molasses and rejected-banana juice from Urabá, Colombia. Actual Biol. 2011;33:183–192.
  • Ding W-T, Zhang G-C, Liu J-J 3′ truncation of the GPD1 promoter in Saccharomyces cerevisiae for improved ethanol yield and productivity. Appl Environ Microbiol. 2013;79:3273–3281.
  • Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 2006;314:1565–1568.
  • Stanley D, Bandara A, Fraser S, et al. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 2010;109:13–24.
  • Xue C, Zhao X-Q, Yuan W-J, et al. Improving ethanol tolerance of a self-flocculating yeast by optimization of medium composition. World J Microbiol Biotechnol. 2008;24:2257.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.