229
Views
14
CrossRef citations to date
0
Altmetric
Article

Isolation and evaluation of xylose-fermenting thermotolerant yeasts for bioethanol production

, , , &
Pages 961-970 | Received 24 Jul 2018, Accepted 29 Nov 2018, Published online: 30 Jan 2019

References

  • Elbehri A, Segerstedt A, Liu P. Biofuels and the sustainability challenge: a global assessment of sustainability issues, trends and policies for biofuels and related feedstocks. New York: Food and Agriculture Organization of the United Nations (FAO); 2013.
  • Lotze-Campen H, von Lampe M, Kyle P. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model inter-comparison. Agric Econ. 2014;45:103–116.
  • Uihlein A, Schebek L. Environmental impacts of a lignocellulosic feedstock biorefinery system: an assessment. Biomass Bioenergy. 2009;33:793–802.
  • Robledo-Abad C, Althaus H-J, Berndes G, et al. Bioenergy production and sustainable development: science base for policymaking remains limited. GCB Bioenergy. 2017;9:541–556.
  • Christensen E, Yanowitz J, Ratcliff M, et al. Renewable oxygenate blending effects on gasoline properties. Energy Fuels. 2011;25:4723–4733.
  • Yang HH, Liu TC, Chang CF, et al. Effects of ethanol-blended gasoline on emissions of regulated air pollutants and carbonyls from motorcycles. Appl Energy. 2012;89:281–286.
  • Wise M, Dooley J, Luckow P, et al. Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid-century. Appl Energy. 2014;114:763–773.
  • Ogbonna JC, Nomura N, Aoyagi H. Bioenergy production and food security in Africa. Afr J Biotechnol. 2013;13:7147–7157.
  • Månsson A, Johansson B, Nilsson LJ. Assessing energy security: an overview of commonly used methodologies. Energy. 2014;73:1–14.
  • Ho DP, Ngo HH, Guo W. A mini review on renewable sources for biofuel. Bioresour Technol. 2014;169:742–749.
  • Agbor VB, Cicek N, Sparling R, et al. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011;29:675–685.
  • Brandt A, Gräsvik J, Hallett JP, et al. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013;15:550–583.
  • Zhang X, Tu M, Paice MG. Routes to potential bioproducts from lignocellulosic biomass lignin and hemicelluloses. Bioenerg Res. 2011;4:246–257.
  • Alonso DM, Wettstein SG, Mellmer MA, et al. Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy Environ Sci. 2013;6:76–80.
  • Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress Energy Comb Sci. 2012;38:449–467.
  • Arora R, Behera S, Sharma NK, et al. A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production. Front Microbiol. 2015;6:889 (1–16).
  • Cadete RM, Melo MA, Dussan KJ, et al. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian forest. PLoS One. 2012;7:e43135.
  • Cadete RM, Fonseca C, Rosa CA. Novel yeast strains from Brazilian biodiversity: biotechnological applications in lignocellulose conversion into biofuels. In Biofuels in Brazil. New York: Springer International Publishing; 2014. p. 255–279.
  • Radhika K, Ravinder R, Ravindra P. Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol MolBiol Rev. 2011;6:8–20.
  • Agbogbo FK, Coward-Kelly G. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeasts, Pichia stipitis. Biotechnol Lett. 2008;30:1515–1524.
  • Hou X. Anaerobic xylose fermentation by Spathaspora passalidarum. Appl Microbiol Biotechnol. 2012;94:205–214.
  • Ren Y, Chen L, Niu Q, et al. Description of Scheffersomyces henanensis sp. nov., a new d-xylose-fermenting yeast species isolated from rotten wood. PloS One. 2014;9:e92315.
  • Nielsen J, Larsson C, van Maris A, et al. Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol. 2013;24:398–404.
  • Talukder AA, Easmin F, Mahmud SA, et al. Thermotolerant yeasts capable of producing bioethanol: isolation from natural fermented sources, identification and characterization. J Biotech Biotechnol Equip. 2016;30:1106–1114.
  • Steensels J, Snoek T, Meersman E, et al. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev. 2014;38:947–995.
  • Jairam C, Surender S, Lata N. Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electronic J Biotechnol. 2016;21:82–92.
  • Abdel-Banat BM, Hoshida H, Ano A, et al. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol. 2010;85:861–867.
  • Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA. 2012;109:6241–6246.
  • Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA. 2004;101:11030–11035.
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425.
  • Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013;30:2725–2729.
  • Gwarr SG, Measurement of ethanol concentration. In: Ezeogu LI, Okolo BN, et al. Tryptic digests of sorghum: an assessment of their usefulness as organic nitrogen sources for the yeast Saccharomyces cerevisiae. J Am Soc Brew Chem. 2005;63:50–56.
  • Singh P, Saha S, Shubhaneel N, et al. Dilute acid hydrolysis of Partheniumhysterophorus L. for the production of ethanol using Pichia stipites. Int J Energy Power (IJEP). 2013;2:88–93.
  • Breuil C, Saddler JN. Comparison of the 3, 5-dinitrosalicylic acid and Nelson-Somogyi methods of assaying for reducing sugars and determining cellulase activity. Enzy Microbial Technol. 1985;7:327–332.
  • Yu T, Zheng XD. Salicylic acid enhances biocontrol efficacy of the antagonist Cryptococcus laurentii in apple fruit. J Plant Growth Regul. 2006;25:166–174.
  • Kuhad RC, Gupta R, Khasa YP, et al. Bioethanol production from pentose sugars: Current status and future prospects. Renew Sustain Energy Rev. 2011;15:4950–4962.
  • Kumar S, Dheeran P, Singh SP, et al. K. Cooling system economy in ethanol production using thermotolerant yeast Kluyveromyces Sp. IIPE453. AJMR. 2013;1:39–44.
  • Bari L, Hassan P, Absar N, et al. Nutritional analysis of two local varieties of papaya (Carica papaya) at different maturation stages. Pak J Biol Sci. 2006;29:137–140.
  • Abdullah B, Mat H. Characterization of solid and liquid pineapple waste. Reaktor. 2008;12:48–52.
  • Ndubuisi IA, Nweze JE, Onoyima NJ, et al. Ethanol Production from Cassava Pulp by a Newly Isolated Thermotolerant Pichia kudriavzevii LC375240. EPE. 2018;10:457–474. 2018;
  • Chan GF, Gan HM, Ling HL, et al. Genome sequence of Pichia kudriavzevii M12, a potential producer of bioethanol and phytase. Eukaryot Cell. 2012;11:1300–1301.
  • Kathiresan K, Saravanakumar SK. Bioethanol production by marine yeasts isolated from coastal mangrove sediment. Int Multidiscipl Res J. 2011;1:19–24.
  • Senthilraja P, Kathiresan K, Saravanakumar K. Comparative analysis of bioethanol production by different strains of immobilized marine yeast. J Yeast Fungal Res. 2011;2:113–116.
  • Okamoto K, Uchii A, Kanawaku R, et al. Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. SpringerPlus. 2014;3:121.
  • Sanchez S, Bravo V, Castro E, et al. Influence of temperature on the fermentation of d-xylose by Pachysolen tannophilus to produce ethanol and xylitol. Proc Biochem. 2004;39:673–679.
  • Kalhorinia S, Goli JK, Venkateswar LR. Screening and parameters optimization of pentose fermenting yeasts for ethanol production using simulated media. Biosci Biotechnol Res Asia. 2014;11:641–648.
  • Nwuche CO, Murata Y, Nweze JE, et al. Bioethanol production under multiple stress condition by a new acid and temperature tolerant Saccharomyces cerevisiae strain LC 269108 isolated from rotten fruits. Process Biochemistry. 2018;67:105–112.
  • Rodrussamee N, Lertwattanasakul N, Hirata K, et al. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromycesmarxianus. Appl Microbiol Biotechnol. 2011;90:1573–1586.
  • West TP, Kennedy DE. II Isolation of Thermotolerant Yeast Strains for Ethanol Production: A Need for New Approaches. J Microb Biochem Technol. 2014;6:e120.
  • Ishchuk OP, Voronovsky AY, Stasyk OV, et al. Over-expression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS. 2008;8:1164–1174.
  • Tanimura A, Nakamura T, Watanabe I, et al. Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. SpringerPlus. 2012;1:27–30.
  • Slininger PJ, Dien BS, Gorsick SW, et al. Nitrogen source and mineral optimization enhances d-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Appl Microbiol Biotechnol. 2006;72:1285–1296.
  • Paulo JA, Solang S, Mussatto I. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Appl Biochem Biotechnol. 2010;162:1306–1310.
  • Zong-Wen P, Jing-Juan L, Ri-Bo H. Fermentation of xylose into ethanol by a new fungus strain Pestalotiopsis sp. XE-1. J Indust Microbiol Biotechnol. 2011;38:927–933.
  • Ogbonna JC, Mashima H, Tanaka H. Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor. Bioresource Technology. 2001;76:1–8.
  • Agbogbo FK, Coward-Kelly G, Torry-Smith M, et al. Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem. 2006;41:2333–2336.
  • Fu N, Peiris P. Co-fermentation of a mixture of glucose and xylose to ethanol by Zymomonasmobilis and Pachysolen tannophilus. World J Microbiol Biotechnol. 2008;24:1091–1097.
  • Shalsh FJ, Ibrahim NA, Arifullah M. Bioethanol production from the co-fermentation and co-culture fermentation of glucose and xylose by Saccharomyces cerevisiae and Pichia stipitis ATCC 58785 in a stirred tank bioreactor. In: Sun Y, editor. Advances in Power and Energy Engineering. Boca Raton, FL: CRC Press; 2016. p. 171–176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.