137
Views
2
CrossRef citations to date
0
Altmetric
Article

Deterministic and stochastic optimization of dilute acid pretreatment of sugarcane bagasse

& ORCID Icon
Pages 987-998 | Received 14 Sep 2018, Accepted 10 Dec 2018, Published online: 30 Jan 2019

References

  • Farrell AE, Plevin RJ, Turner BT, et al. Ethanol can contribute to energy and environmental goals. Science. 2006;311:506–509.
  • Demirbas A. Political, economic and environmental impacts of biofuels: a review. Appl Energy. 2009;86:S108–S117.
  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, et al. Bio-ethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006;24:549–556.
  • Kothari R, Tyagi VV, Pathak A. Waste-to-energy: a way from renewable energy sources to sustainable development. Renew Sustain Energy Rev. 2010;14:3164–3170.
  • Bekmuradov V, Luk G, Luong R. Improved cellulose and organic-solvents based lignocellulosic fractionation pre-treatment of organic waste for bioethanol production. Am J Eng Res. 2014;03:177–185.
  • Chaturvedi V, Verma P. An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. Biotech. 2013;3:415–431.
  • Brodeur G, Yau E, Badal K, et al. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 2011;2011:787532.
  • Zhu Z, Sathitsuksanoh N, Vinzant T, et al. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng. 2009;103:715–724.
  • Idrees M, Adnan A, Sheikh S, et al. Optimization of dilute acid pretreatment of water hyacinth biomass for enzymatic hydrolysis and ethanol production. Excli J. 2013;12:30–40.
  • Karapatsia A, Pappas I, Penloglou G, et al. Optimization of dilute acid pretreatment and enzymatic hydrolysis of Phalaris aquatica L. lignocellulosic biomass in batch and fed-batch processes. Bioenerg Res. 2017;10:225–236.
  • Soares IB, Mendes KCS, Benachour M, et al. Evaluation of the effects of operational parameters in the pretreatment of sugarcane bagasse with diluted sulfuric acid using analysis of variance. Chem Eng Commun. 2017;204:1369–1390.
  • Morales-Rodriguez R, Meyer AS, Gernaey KV, et al. Dynamic model-based evaluation of process configurations for integrated operation of hydrolysis and co-fermentation for bioethanol production from lignocellulose. Bioresour Technol. 2011;102:1174–1184.
  • Morales-Rodriguez R, Meyer AS, Gernaey KV, et al. A framework for model-based optimization of bioprocesses under uncertainty: lignocellulosic ethanol production case. Comput Chem Eng. 2012;42:115–129.
  • Prunescu RM, Blanke M, Jakobsen JG, et al. Model-based plantwide optimization of large scale lignocellulosic bioethanol plants. Biochem Eng J. 2017;124:13–25.
  • Salas SD, Geraili A, Romagnoli JA. Optimization of renewable energy businesses under operational level uncertainties through extensive sensitivity analysis and stochastic global optimization. Ind Eng Chem Res. 2017;56:3360–3372.
  • Verma SK, Fenila F, Shastri Y. Sensitivity analysis and stochastic modelling of lignocellulosic feedstock pretreatment and hydrolysis. Comput Chem Eng. 2017;106:23–39.
  • López-Arenas T, Rathi P, Ramírez-Jiménez E, et al. Factors affecting the acid pretreatment of lignocellulosic biomass: batch and continuous process. Comput Aided Chem Eng. 2010;28:979–984.
  • Degenstein JC, Kamireddy S, Tucker MP, et al. Novel batch reactor for the dilute acid pretreatment of lignocellulosic feedstocks with improved heating and cooling kinetics. Int J Chem React Eng. 2011;9.
  • Aradhey A. India Biofuels Annual. USDA Foreign Agricultural Service. 1–16; 2012.
  • Gurgel LVA, Marabezi K, Zanbom MD, et al. Dilute acid hydrolysis of sugar cane bagasse at high temperatures: a kinetic study of cellulose saccharification and glucose decomposition. Part I: sulfuric acid as the catalyst. Ind Eng Chem Res. 2012;51:1173–1185.
  • Jönsson LJ, Alriksson B, Nilvebrant N-O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6:1–10.
  • Rocha GJ, de M, Martin C, Soares IB, et al. Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioenergy. 2011;35:663–670.
  • Mamman AS, Lee JM, Kim YC, et al. Furfural: hemicellulose/xylose-derived biochemical. Biofuels Bioprod Bioref. 2008;2:438–454.
  • Vermaas JV, Petridis L, Qi X, et al. Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol Biofuels. 2015;8:217.
  • Agbor VB, Cicek N, Sparling R, et al. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011;29:675–685.
  • Kenney KL, Smith WA, Gresham GL, et al. Understanding biomass feedstock variability. Biofuels. 2013;4:111–127.
  • Sun Y, Cheng JJ. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour Technol. 2005;96:1599–1606.
  • Shuai L, Yang Q, Zhu JY, et al. Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresour Technol. 2010;101:3106–3114.
  • Lavarack BP, Griffin GJ, Rodman D. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy. 2002;23:367–380.
  • Liu X, Lu M, Ai N, et al. Kinetic model analysis of dilute sulfuric acid-catalyzed hemicellulose hydrolysis in sweet sorghum bagasse for xylose production. Ind Crops Prod. 2012;38:81–86.
  • Kim SB, Lee YY. Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment. Bioresour Technol. 2002;83:165–171.
  • Schell DJ, Farmer J, Newman M, et al. Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor: investigation of yields, kinetics, and enzymatic digestibilities of solids. ABAB. 2003;108:69–86.
  • Shekiro Iii J, Kuhn EM, Nagle NJ, et al. Characterization of pilot-scale dilute acid pretreatment performance using deacetylated corn stover. Biotechnol Biofuels. 2014;7:23.
  • Rahikainen JL, Martin-Sampedro R, Heikkinen H, et al. Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresour Technol. 2013;133:270–278.
  • Kaya CY, Maurer H. A numerical method for nonconvex multi-objective optimal control problems. Comput Optim Appl. 2014;57:685–702.
  • Benavides PT, Diwekar U. Studying various optimal control problems in biodiesel production in a batch reactor under uncertainty. Fuel. 2013;103:585–592.
  • Biegler LT, Grossmann IE. Retrospective on optimization. Comput Chem Eng. 2004;28:1169–1192.
  • Kirk DE. Optimal control theory: an introduction. Englewood Cliffs: Prentice-Hall; 1970. p. 452.
  • Sorek N, Yeats TH, Szemenyei H, et al. The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. Biosci. 2014;64:192–201.
  • Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673–686.
  • Gnansounou E, Dauriat A. Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol. 2010;101:4980–4991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.