527
Views
0
CrossRef citations to date
0
Altmetric
Articles

A comparative review of prospective biodiesel reported from lipid sources of two microalgae and two non-traditional oilseeds

Pages 1091-1102 | Received 29 Aug 2018, Accepted 17 Jan 2019, Published online: 07 Jun 2019

References

  • Mata TM, Martinis AA, Caetano NS. Microalgae for biodiesel production and other applications. Renew Sustain Energy Rev. 2010;14:36–60.
  • Rawat I, Ranjith Kumar R, Mutanda T, et al. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy. 2013;103:444–467.
  • Beal CM, Smith CH, Webber ME. A framework to report the production of renewable diesel from algae. Bioenergy Res. 2011;4:36–60.
  • Vicente G, Bautista LF, Rosalia R. Biodiesel production from biomass of an oleaginous fungus. Bio Chem Eng J. 2009;48:22–27.
  • Oca Mgm D, Viegas CV, Lemgas CV. Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass Bioenergy. 2011;4:1533–1535.
  • Murphy CF, Allen DT. Energy: water nexus for mass cultivation of algae. Environ Sci Technol. 2011;45:5861–5868.
  • Knothe G. Fuel properties of highly polyunsaturated fatty acid methyl esters prediction of fuel properties of algal biodiesel. Energy Fuels. 2012;26:5265–5273.
  • Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–639.
  • Durrett TP, Benning C, Ohlrogge J. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 2008;54:593–607.
  • Grima EM, Medina AR, Gimenez AG. Chemicals from microalgae, Cohen Z, editor. London: Taylor & Francis; 1999. p. 108–199.
  • Dibenedetto A, Collucci A, Pastore C. Heterogenous catalysis applied to conversion of biogenic substances, platform molecules and oils In: Michele A, Dibendetto A, Dumeignil F, editors. Biorefinery from biomass to chemicals and fuels. Berlin, Boston (MA): Walter de Gruyter GmbH & Co, KG; 2012. p. 279–295.
  • Thompson GA. Jr. Lipids and membrane function in green algae. Biochim Biophys Acta. 1996;1302:17–45.
  • Meher LK, Naik SN, Naik MK, et al. Biodiesel production using Karanjia (Pongamia pinnata) and Jatropha curcas seed oils, Chapter 18. In: Pandey A, editor. Handbook of plant based biofuels. Boca Raton, FL: Taylor & Francis; CRC Press. 2009. p. 255–266.
  • Rao KS, Chakrabarti P, Rao BVSK, et al. Phospholipid composition of Jatropha curcus seed lipids. J Am Oil Chem Soc. 2009;86:197–200.
  • Chen S-Y, Teerananont N, Sonthisawate T, et al. A cost-effective acid degumming process produces high-quality Jatropha oil in tropical monsoon climates. Eur J Lipid Sci Technol. 2015;117:1079–1087.
  • Ren X, Zhao X, Turcotte F, et al. Current lipid extraction methods are significantly enhanced adding a water treatment step in Chlorella protothecoides. Microbial Cell Fact. 2017;16:1–13.
  • Klaitong P, Fa-Aroonsawat S, Chungjatupornchai W. Accelerated triglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleabundans by overexpression by diacylglycerol acyltransferase 2. Microbial Cell Fact. 2017;16:61 (1–10).
  • Ahmed A, Campion BB, Gasparatos A. Biofuel development in Ghana: policies of expansion and drivers of failure in the jatropha sector. Renew Sustain Energy Rev. 2017;70:133–149.
  • Scoot PT, Preglej L, Chen N, et al. Pongamia pinnata: a untapped resource for the biofuels industry of the future. Bioenerg Res. 2008;1:2–11.
  • Cahoon EB, Lindqvist Y, Schneider G, et al. Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position. Proc Natl Acad Sci USA. 1997;94:4872–4877.
  • Miao XL, Wu QY. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol. 2004;110:85–93.
  • Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol. 2006;126:499–507.
  • Drochoiu G. Turbidimetric lipid assay in seed flours. J Food Lipids. 2005;12:12–22.
  • Folch J, Lees M, Stanley GHS. A simple method for isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;1:497–509.
  • Cequier-Sanchez E, Rodriguez C, Ravelo AG, et al. Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. J Agric Food Chem. 2008;56:4297–4303.
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917.
  • Grima EM, Belarbi EH, Acien Ferna, ´et al. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003;20:491–515.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.
  • Terry KL, Raymond LP. System design for autotrophic production of microalgae. Enzyme Microb Technol. 1985;7:474–487.
  • Grima EM, Acien Fernandez FG, Camacho FG, et al. Photobioreactors: light, regime, mass transfer and scale up. J Biotechnol. 1999;70:231–247.
  • Acien FG, Fernandez JM, Magan JJ, et al. Production cost of real microalgae production plant and strategies to reduce it. Biotechnol Adv. 2012;30:1344–1353.
  • Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, et al. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sustain Energy Rev. 2013;18:211–245.
  • Foidl N, Foidl G, Sanchez M, et al. Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresource Technol. 1996;58:77–82.
  • Achten WMJ, Verchot L, Franken YJ, et al. Jatropha bio-diesel production and use. Biomass Bioenergy. 2008;32:1063–1084.
  • Shah S, Sharma A, Gupta MN. Extraction of oil from Jatropha curcus L. seed kernels by combination of ultrasonication and aqueous enzymatic oil. extraction. Bioresource Technol. 2005;96:121.
  • Hass W, Mittlebach M. Detoxification experiments with the seed oil from Jatropha curcas L. Indus Crops Products. 2000;12:111–118.
  • King AJ, He W, Cuevas JA, et al. Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot. 2009;60:2897–2905.
  • Mandal B, Majumdar SG, Maity CR. Protease inhibitors and in vitro protein digestibility of defatted seed cakes of akashmon and karanjia. J Am Oil Chem Soc. 1985;62:1124–1126.
  • Griffiths M, Harrison S. Lipid productivity as key characteristic for choosing algae species for biodiesel production. J Appl Phycol. 2009;54:621–639.
  • Binnal P, Babu PN. Enhancement of lipid productivity of Chlorella protothecoides cultivated in secondary wastewater under nitrogen starvation through optimization of environmental factors. Biofuels. 2017;1. https://doi.org/10.1080/17597269.2017.133635.
  • AOCS Lipid Library. Available from: http://lipidlibrary.aocs.org/OilsFats/content.cfm?ItemNumber=40337
  • Chen JE, Smith AG. A look at diacylglycerol acyltransferases (DGATs) in algae. J Biotechnol. 2012;162:28–39.
  • Li-Beisson Y, Beisson F, Riekhof W. Metabolism of acyl lipids in Chalamydnomonas reinhardtii. Plant J. 2015;82:504–522.
  • Chungjatupornchai W, Watcharawipas A. Diacylglycerol acyltransferase type 2 cDNAfrom the oleaginous microalga Neochloris oleoabundans: cloning and functional characterization. J Appl Phycol. 2015;27:1499–1507.
  • La Russaa M, Bogen C, Uhmeyer A, et al. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J of Biotecnology. 2012;162:13–20.
  • Gong Y, Zhang J, Guo X, et al. Identifcation and characterization of PtDGAT2B, an acyltransferase of the DGAT2 acyl-coenzyme A: diacylglycerol acyltransferase family in the diatom Phaeodactylum tricornutum. FEBS Lett. 2013;587:481–487.
  • Li D-W, Cen S-Y, Liu Y-H, et al. A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. Biotechnol. 2016;229:65–71.
  • Niu Y-F, Zhang M-H, Li D-W, et al. Improve ment of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerolacyltransferase in marine diatom Phaeodactylum tricornutum. Marine Drugs. 2013;11:4558–4569.
  • Gouveia L, Marques AE, Da Silva TL, et al. Neochloris oleabundans UTEX# 1185:a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol. 2009;36:821–826.
  • Arroyo TH, Wei W, Hu B. Oil accumulation via heterotrophic/Mixotrophic Chlorella protocoides. Applied Biochem Biotechnol. 2010;162:1978–1995.
  • Li Y, Horsman M, Wang B, et al. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol. 2008:81:629–636.
  • Xiong W, Li XF, Xiang JY, et al. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbiodiesel production. Appl Microbiol Biotechnol. 2008;78:29–36.
  • Sinha P, Islam MA, Negi MS, et al. Changes in oil content and fatty and fatty acid composition in Jatropha curcas during seed development. Indus Crops Products. 2015;77:508–510.
  • Sharma SS, Islam MA, Negi MS, et al. Changes in oil content and fatty acid profiles during seed development in Pongamia pinnata (L.) Pierre. Ind J Plant Physiol. 2015;20:281–284.
  • Patil VK, Bhandare P, Kulkarni PB, et al. Progeny evaluation of Jatropha curcas and Pongamia pinnata with comparison to bioproductivity and biodiesel parameters. J For Res. 2015;26:137–142.
  • Savoire R, Lanoisellé JL, Vorobiev E. Mechanical continuous oil expression from oilseeds, a review. Food Bioprocess Technol. 2013;6:1–16.
  • Dong T, Knoshaug EP, Pienkos PT, et al. Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Appl Energy. 2016;177:879–895.
  • King AJ, He W, Cuevas JA, et al. Potential of Jatropha curcas as renewbale oil and animal feed. Journal of Experimental Botany. 2009;60:2897–2905.
  • Alleman TL. Harmonization of biodiesel specifications. Lipid Technol. 2008;20:40–42.
  • Greishaber H. Basic principles of diesel engine. In: Bauer H, editor. Diesel engine management, 3rd edition. Ploschingen: Robert Bosch GmbH (German); Suffolk: Professional. Engineering Publishing (English); 2004. p. 16–18.
  • Winterbone D, Turan A. Combustion and flames. In: Winterbone D, Turan A, editors. Advanced thermodynamics for engineers, 2nd edition. Amsterdam: Elsevier; 2015. p. 323–344.
  • Eilts P, Stoeber-Schmidt C, Wolf R. Investigation of extreme mean effective and maximum cylinder pressures in a passenger car diesel engine. SAE Paper 2013-012-1622; 2013.
  • Oyeyemi VB, Keith JA, Carter EA. Accurate bond energies of biodiesel methyl esters from multireference averaged coupled-pair functional calculations. J of Physical Chemistry A. 2014;118:7492–7403.
  • Knothe G, Matheaus AC, Ryan TW. III Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel. 2003;82:1–5.
  • Sayre R. Microalgae: Microalgae; The potential for carbon capture. BioScience. 2010;60:722–727.
  • Wilson MH, Groppo J, Placido A, et al. CO2 recycling using microalgae for the production of fuels. Appl Petrochem Res. 2014;4:41–53.
  • Packer MA. Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy. 2009;37:3428–3437.
  • Kumar K, Dasgupta CN, Nayak B, et al. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technol. 2011;102:4945–4953.
  • Slade R, Bauen A. Microalgae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy. 2013;53:29–38.
  • Farooq W, William IS, Park MS, et al. Water use and its recycling in microalgae cultivation for biofuel application. Bioresource Technol. 2015;184:73–81.
  • Garg KK, Wani SP, Rao AVRK. Kesva Rao AVR Crop coefficients of Jatropha (Jatropha curcas) and Pongamia (Pongamia PInnata) using water balance approach. WENE. 2014;3:301–309.
  • Becker K, Wulfmeyer V, Berger T, et al. Carbon farming in hot, dry coastal areas: an option for climate change mitigation. Earth Syst Dynam. 2013;4:237–251.
  • NREL. Available from: http://task39.sites.olt.ubc.ca/files/2013/05/IEA-Task-39-Current-Status-and-Potential-of-Algal-biofuels0.pdf
  • Mohibbe AM, Waris A, Nahar NM. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils foruse as biodiesel in India. Biomass Bioenerg. 2005;29:293–302.
  • Soto I, Ellison C, Brenda M, et al. Why do farmers abandon jatropha cultivation? The case of Chiapas, Mexico. Energy Sustain Develop. 2018;42:77–86.
  • Madhaiyan M, Peng N, Te N, et al. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. Biotechnol Biofuels. 2013;6:140.
  • Halford NG. Biodiesel, Chapter 3. In: Halford NG editor. An introduction to bioenergy. London: Imperial College Press. 2015. p. 63–92.
  • Kaushik N, Mann S, Kumar K. Pongamia pinnata: a candidate tree for biodiesel feedstock. Energy Sources Part A. 2015;37:1526–1533.
  • Sharon S, Scott PT, Gresshoff PM. Nodulation in the legume biofuel feedstock tree Pongamia pinnata. Agric Res. 2013;2:207–214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.