383
Views
9
CrossRef citations to date
0
Altmetric
Articles

Bioethanol production from whey powder by immobilized E. coli expressing Vitreoscilla hemoglobin: optimization of sugar concentration and inoculum size

, &
Pages 1103-1108 | Received 30 Oct 2018, Accepted 17 Jan 2019, Published online: 11 Apr 2019

References

  • Blažić M, Pavić K, Zavadlav S, et al. The impact of traditional cheeses and whey on health. Croat J Food Sci Technol. 2017;9:198–203.
  • Ghaly AE, El-Taweel AA. Effect of micro-aeration on the growth of Candida pseudotropicalis and production of ethanol during batch fermentation of cheese whey. Bioresour Technol. 1995;52:203–217.
  • Leite AR, Guimarães WV, Araújo EFD, et al. Fermentation of sweet whey by recombinant Escherichia coli K011. Braz J Microbiol. 2000;31:211–214.
  • Kourkoutas Y, Bekatorou A, Banat IM, et al. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol. 2004;21:377–397.
  • Silveira WB, Passos FJV, Mantovani HC, et al. Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: a flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzyme Microb Technol. 2005;36:930–936.
  • Ozmihci S, Kargi F. Ethanol production from cheese whey powder solution in a packed column bioreactor at different hydraulic residence times. Biochem Eng J. 2008;42:180–185.
  • Lin Y, Zhang W, Li C, et al. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenerg. 2012;47:395–401.
  • Siso MIG. The biotechnological of utilization of cheese whey: a review. Bioresour Technol. 1996;57:1–11.
  • Pesta G, Meyer-Pittroff R, Russ W. Utilization of whey. In: Utilization of by-products and treatment of waste in the food industry, Oreopoulou V, Russ W, editor. New York: Springer. 2007. p. 193–207.
  • Guimarães PMR, Teixeira JA, Domingues L. Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv. 2010;28:375–384.
  • Kargi F, Ozmihci S. Utilization of cheese whey powder (CWP) for ethanol fermentations: Effects of operating parameters. Enzyme Microb Tech. 2006;38:711–718.
  • Guo X, Zhou J, Xiao D. Improved ethanol production by mixed immobilized cells of Kluyveromyces marxianus and Saccharomyces cerevisiae from cheese whey powder solution fermentation. Appl Biochem Biotechnol. 2010;160:532–538.
  • Sar T, Stark BC, Akbas MY. Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin. Bioengineered. 2017;8:171–181.
  • Sar T, Seker G, Erman AG, et al. Repeated batch fermentation of immobilized E. coli expressing Vitreoscilla hemoglobin for long-term use. Bioengineered. 2017;8:651–660.
  • Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. 2006;69:627–642.
  • Puligundla P, Smogrovicova D, Obulam VS, et al. Very high gravity (VHG) ethanolic brewing and fermentation: a research update. J Ind Microbiol Biotechnol. 2011;38:1133–1144.
  • Yao W, Wu X, Zhu J, et al. Bacterial cellulose membrane: a new support carrier for yeast immobilization for ethanol fermentation. Process Biochem. 2011;46:2054–2058.
  • Ylitervo P, Franzen CJ, Taherzadeh MJ. Ethanol production at elevated temperatures using encapsulation of yeast. J Biotechnol. 2011;156:22–29.
  • Kashid M, Ghosalkar A. Evaluation of fermentation kinetics of xylose to ethanol fermentation in the presence of acetic acid by Pichia stipitis: modeling and experimental data comparison. 3 Biotech. 2018;7:240.
  • Santos ELI, Rostro-Alanís M, Parra-Saldívar R, et al. A novel method for bioethanol production using immobilized yeast cells in calcium-alginate films and hybrid composite pervaporation membrane. Bioresour Technol. 2018;247:165–173.
  • Sembiring KC, Mulyani H, Fitria AI, et al. Rice flour and white glutinous rice flour for use on immobilization of yeast cell in ethanol production. Energy Procedia. 2013;32:99–104.
  • Kirdponpattara S, Phisalaphong M. Bacterial cellulose-alginate composite sponge as a yeast cell carrier for ethanolproduction. Biochem Eng J. 2013;77:103–109.
  • Singh A, Sharma P, Saran AK, et al. Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renew Energ. 2013;50:488–493.
  • Duarte JC, Rodrigues JAR, Moran PJS, et al. Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express. 2013;3:2–8.
  • Carvalho W, Canilha L, Silva SS. Semi-continuous xylose-to-xylitol bioconversion by Ca-alginate entrapped yeast cells in a stirred tank reactor. Bioprocess Biosyst Eng. 2008;31:493–498.
  • Phisalaphong M, Budiraharjo R, Bangrak P, et al. Alginate-loofa as carrier matrix for ethanol production. J Biosci Bioeng. 2007;104:214–217.
  • Turhan I, Bialka KL, Demirci A, et al. Ethanol production from carob extract by using Saccharaomyces cerevisiae. Bioresour Technol. 2010;101:5290–5296.
  • de Albuquerque Wanderley AC, Soares ML, Gouveia ER. Selection of inoculum size and Saccharomyces cerevisiae strain for ethanol production in simultaneous saccharification and fermentation (SSF) of sugar cane bagasse. Afr J Biotechnol. 2014;13:2762–2765.
  • Tahir A, Aftab M, Farasat T. Effcet of cultural condiditons on ethanol production by localay isolated Saccaharamyces cerevisiae BIO-07. J Appl Pharm. 2010;3:72–78.
  • Asgher M, Ahmad Z, Muhammad H, et al. Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for sacharificaiton and bio-ethanol production. In Crp Prod. 2013;44:488–495.
  • Nikolić S, Mojović L, Pejin D, et al. Production of bioethanol from corn meal hydrolyzates by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus. Biomass Bioenerg. 2010;34:1449–1456.
  • Ingram LO, Conway T, Clark DP, et al. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol. 1987;53:2420–2425.
  • Ingram LO, Conway T. Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Environ Microbiol. 1988;54:397–404.
  • Dien BS, Nichols NN, O’bryan PJ, et al. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol. 2000;84–86:181–196.
  • Sanny T, Arnaldos M, Kunkel SA, et al. Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose. Appl Microbiol Biotechnol. 2010;88:1103–1112.
  • Arnaldos M, Kunkel SA, Wang J, et al. Vitreoscilla hemoglobin enhances ethanol production by Escherichia coli in a variety of growth media. Biomass Bioenerg. 2012;37:1–8.
  • Abanoz K, Stark BC, Akbas MY. Enhancement of ethanol production from potato-processing wastewater by engineering Escherichia coli using Vitreoscilla haemoglobin. Lett Appl Microbiol. 2012;55:436–443.
  • Akbas MY, Sar T, Ozcelik B. Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by "Vitreoscilla hemoglobin expressing" Escherichia coli. Biosci Biotechnol Biochem. 2014;78:687–694.
  • Sumer F, Stark BC, Akbas MY. Efficient ethanol production from potato and corn processing industry waste using E. coli engineered to express Vitreoscilla haemoglobin. Environ Technol. 2015;36:2319–2327.
  • Ozmihci S, Kargi F. Effects of feed sugar concentration on continuous ethanol fermentation of cheese whey powder solution (CWP). Enzyme Microb Technol. 2007;41:876–880.
  • Ozmihci S, Kargi F. Ethanol fermentation of cheese whey powder solution by repeated fed-batch operation. Enzyme Microb Technol. 2007;41:169–174.
  • Ozmihci S, Kargi F. Comparison of yeast strains for batch ethanol fermentation of cheese-whey powder (CWP) solution. Lett Appl Microbiol. 2007;44:602–606.
  • Ozmihci S, Kargi F. Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations. Bioresource Technol. 2007;98:2978–2984.
  • Chang HN, Seong GH, Yoo IK, et al. Microencapsulation of recombinant Saccharomyces cerevisiae cells with invertase activity in liquid‐core alginate capsules. Biotechnol Bioeng. 1996;51:157–162.
  • Chibata I, Tosa T, Satı T. Immobilized aspartase-containing microbial cells: preparation and enzymatic properties. Appl Microbiol. 1974;27:878–885.
  • Fernandes MC, Ferro MD, Paulino AF, et al. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresource Technol. 2015;186:309–315.
  • Duangmanee T, Padmasiri SI, Simmons JJ, et al. Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments. Water Environ Res. 2007;79:975–983.
  • Cheong SH, Park HK, Kim BS, et al. Microencapsulation of yeast cells in the calcium alginate membrane. Biotechnol Tech. 1993;7:879–884.
  • Pasotti L, Zucca S, Casanova M, et al. Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli. BMC Biotechnol. 2017;17:48.
  • Stark BC, Dikshit KL, Pagilla KR. The biochemistry of Vitreoscilla hemoglobin. Comput Struct Biotechnol J. 2012;3:1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.