401
Views
7
CrossRef citations to date
0
Altmetric
Article

Second-generation ethanol production by separate hydrolysis and fermentation from sugarcane bagasse with cellulose hydrolysis using a customized enzyme cocktail

, , , &
Pages 1225-1231 | Received 03 Sep 2018, Accepted 30 Mar 2019, Published online: 14 May 2019

References

  • Manochio C, Andrade BR, Rodriguez RP, et al. Ethanol from biomass: a comparative overview. Ren Sust Ener Rev. 2017;80:743–755.
  • Ferreira JA, Brancoli P, Agnihotri S, et al. Integration of lignocelluloses and other wastes in 1st generation bioethanol processes. Proc Biochem. 2018;75:173–186.
  • Única. (2017) Brazilian Sugarcane Industry Association, Sugarcane production and processing. Available from: http://www.unicadata.com.br [last acessed Feb. 2018].
  • Soccol CR, de Souza Vandenberghe LP, Medeiros AB, et al. Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol. 2010;101:4820–4825.
  • Lynd LR, Cushman JH, Nichols RJ, et al. Fuel ethanol from cellulosic biomass. Science. 1991;251:1318–1323.
  • Bayer EA, Lamed R, Himmel ME. The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol. 2007;18:237–245.
  • Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol Adv. 2012;30:1458–1480.
  • Aditiya HB, Mahlia TMI, Chong WT, et al. Second generation bioethanol production: A critical review. Ren Sust Ener Rev. 2016;66:631–653.
  • Alvira P, Negro MJ, Ballesteros M. Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol. 2011;102:4552–4558.
  • Le Costaouëc T, Pakarinen A, Várnai A, et al. The role of carbohydrate binding module (CBM) at high substrate consistency: comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII). Bioresour Technol. 2013;143:196–203.
  • Zhuang J, Marchant MA, Nokes SE, et al. Economic analysis of cellulase production methods for bio-ethanol. App Eng Agricult. 2007;23:679–687.
  • Carpio LGT, de Souza FS. Optimal allocation of sugarcane bagasse for producing bioelectricity and second generation ethanol in Brazil: scenarios of cost reductions. Ren Ener. 2017;111:771–780.
  • Betancur GJ, Pereira N. Jr Sugar cane bagasse as feedstock for second generation ethanol production: Part I: diluted acid pretreatment optimization. Elect J Biotechnol. 2010;13:10–11.
  • Vasquez MP, Silva JNC, Souza MB, et al. Enzimatic hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation. Appl Biochem Biotechnol. 2007;137/140:141–154.
  • Méndez Arias J, Modesto LF, Polikarpov I, et al. Design of an enzyme cocktail consisting of different fungal platforms for efficient hydrolysis of sugarcane bagasse: optimization and synergism studies. Biotechnol Prog. 2016;32:1222–1229.
  • Pereira N. Jr. (1991) Investigation of D-xylose fermenting yeast. Ph.D. Thesis. Deparment of Chemistry. The University of Manchester, UK.
  • Mussatto SI, Roberto IC. Avaliação de diferentes tipos de carvão ativo na destoxificação de hidrolisado de palha de arroz para produção de xilitol. Ciênc Tecnol Aliment. 2004;24:94–100.
  • Arantes V, Saddler JN. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels. 2011;4:1.
  • Arantes V, Saddler JN. Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels. 2010;3:1–11.
  • Saini JK, Patel AK, Adsul M, et al. Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Ren Ener. 2016;98:29–42.
  • Ramos LP, Da Silva L, Ballem AC, et al. Enzymatic hydrolysis of steam-exploded sugarcane bagasse using high total solids and low enzyme loadings. Bioresour Technol. 2015;175:195–202.
  • Knutsen JS, Liberatore MW. Rheology modification and enzyme kinetics of high solids cellulosic slurries. Energy Fuels. 2010;24:3267–3274.
  • Cara C, Moya M, Ballesteros I, et al. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Proc Biochem. 2007;42:1003–1109.
  • García-Aparicio MP, Oliva JM, Manzanares P, et al. Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel. 2011;90:1624–1630.
  • Jørgensen H, Vibe-Pedersen J, Larsen J, et al. Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng. 2007;96:862–870.
  • Wang W, Zhuang X, Yuan Z, et al. High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresour Technol. 2012;108:252–257.
  • López-Linares JC, Romero I, Cara C, et al. Bioethanol production from rapeseed straw at high solids loading with different process configurations. Fuel. 2014;122:112–118.
  • Gupta R, Sharma KK, Kuhad RC. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol. 2009;100:1214–1220.
  • Neves PV, Pitarelo AP, Ramos LP. Production of cellulosic ethanol from sugarcane bagasse by steam explosion: effect of extractives content, acid catalysis and different fermentation technologies. Bioresour Technol. 2016;208:184–194.
  • Mesa L, González E, Romero I, et al. Comparison of process configurations for ethanol production from two-step pretreated sugarcane bagasse. Chem Eng J. 2011;175:185–191.
  • Guilherme AA, Dantas PV, Padilha CEA, et al. Ethanol production from sugarcane bagasse: use of different fermentation strategies to enhance an environmental-friendly process. J Envir Manag. 2019;15:44–51.
  • You Y, Yang S, Bu L, et al. Comparative study of simultaneous saccharification and fermentation byproducts from sugarcane bagasse using steam explosion, alkaline hydrogen peroxide and organosolv pretreatments. RSC Adv. 2016;6:13723–13729.
  • Huang Y, Qin X, Luo XM, et al. Efficient enzymatic hydrolysis and simultaneous saccharification and fermentation of sugarcane bagasse pulp for ethanol production by cellulase from Penicillium oxalicum EU2106 and thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass Bioen. 2015;77:53–63.
  • Rudolf A, Alkasrawi M, Zacchi G, et al. A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enz Microb Technol. 2005;37:195–204.
  • Olofsson K, Bertilsson M, Lidén GA. A short review on SSF: an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels. 2008;1:1.
  • Hilares RT, Ienny JV, Marcelino PF, et al. Ethanol production in a simultaneous saccharification and fermentation process with interconnected reactors employing hydrodynamic cavitation pretreated sugarcane bagasse as raw material. Bioresour Technol. 2017;243:652–659.
  • Bellido C, Bolado S, Coca M, et al. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour Technol. 2011;102:10868–10874.
  • Scordia D, Cosentino SL, Jeffries TW. Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. Bioresour Technol. 2010;101:5358–5365.
  • Njoku SI, Iversen JA, Uellendahl H, et al. Production of ethanol from hemicellulose fraction of cocksfoot grass using Pichia stipitis. Sustain Chem Process. 2013;1:13.
  • Ferrari MD, Neirotti E, Albornoz C, et al. Ethanol production from eucalyptus wood hemicellulose hydrolysate by Pichia stipitis. Biotechnol Bioeng. 1992;40:753–759.
  • Pampulha ME, Loureiro-Dias MC. Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl Microbiol Biotechnol. 1990;34:375–380.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.