301
Views
9
CrossRef citations to date
0
Altmetric
Article

Biobutanol production from cassava waste residue using Clostridium sp. AS3 in batch culture fermentation

ORCID Icon, ORCID Icon, , &
Pages 1259-1266 | Received 06 Dec 2018, Accepted 23 Mar 2019, Published online: 14 May 2019

References

  • Luo W, Zhao Z, Pan H, et al. Feasibility of butanol production from wheat starch wastewater by Clostridium acetobutylicum. Energy. 2018;154:240–248.
  • Wang S, Dong S, Wang Y. Enhancement of solvent production by overexpressing key genes of the acetone-butanol-ethanol fermentation pathway in Clostridium saccharoperbutylacetonicum N1-4. Bioresour Technol. 2017;245:426–433.
  • Shanmugam S, Sun C, Zeng X, et al. High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy. Bioresour Technol. 2018;256:543–547.
  • Al-Shorgani NKN, Kalil MS, Yusoff WMW, et al. Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of Clostridium acetobutylicum YM1. Saudi J Biol Sci. 2018;25:339–348.
  • Chua TK, Liang DW, Qi C, et al. Characterization of a butanol–acetone-producing Clostridium strain and identification of its solventogenic genes. Bioresour Technol. 2013;135:372–378.
  • Al-Shorgani NK, El M T, et al. Biobutanol production by a new local isolate of Clostridium acetobutylicum YM1. AIP Conf Proc. 2014;1614:523.
  • Tran HTM, Cheirsilp B, Umsakul K, et al. Response surface optimisation for acetone-butanol-ethanol production from cassava starch by co-culture of Clostridium butylicum and Bacillus subtilis. Maejo Int J Sci Technol. 2011;5:374–389.
  • Li X, Li Z, Zheng J, et al. Yeast extract promotes phase shift of bio-butanol fermentation by Clostridium acetobutylicum ATCC824 using cassava as substrate. Bioresour Technol. 2012;125:43–51.
  • Syamala C, Kuzhivilayil SJ, Nair MM, et al. Management of Cassava starch factory solid waste (Thippi) through composting to a nutrient rich organic manure. Commun Soil Sci Plant Anal. 2017;48:595–607.
  • Lepiz-Aguilar L, Rodriguez-Rodríguez CE, Arias ML, et al. Acetone-Butanol-Ethanol (ABE) production in fermentation of enzymatically hydrolyzed cassava flour by Clostridium beijerinckii BA101 and solvent separation. J Microbiol Biotechnol. 2013; 23:1092–1098.
  • Al-Shorgani NKN, Kalil MS, Yusof WMW, et al. Fermentation of sago starch to biobutanol in a batch culture using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Ann Microbiol. 2012;62:1059–1070.
  • Berezina OV, Brandt A, Yarotsky S, et al. Isolation of a new butanol-producing Clostridium strain: High level of hemicellulosic activity and structure of solventogenesis genes of anew Clostridium saccharobutylicum isolate. Syst Appl Microbiol. 2009;32:449–459.
  • Johnravindar D, Murugesan K, Wong JWC, et al. Waste-to-biofuel: Production of biobutanol from sago waste residues. Environ Technol. 2017;38:1725–1734.
  • Xin F, He J. Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production. Bioresour Technol. 2013;135:309–315.
  • Al-Shorgani NKN, Kalil MS, Yusoff WMW, et al. Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess Biosyst Eng. 2012;35:817–826.
  • Yetti M, Nazamid BS, Roselina K, et al. Improvement of glucose production by raw starch degrading enzyme utilizing acid-treated sago starch as substrate. Asian Food J. 2007;14:83–89.
  • Chen CK, Blaschek HP. Acetate enhanced solvent production and prevents degeneration in Clostridium beijierinckii BA101. Appl Microbiol Biotechnol. 1999;52:170–173.
  • Mohammed A, Oyeleke SB, Egwim EC. Pretreatment and hydrolysis of cassava peels for fermentable sugar production. Asian J of Biochem. 2014;9:65–70.
  • Hermiati E, Mangunwidjaja D, Sunarti TC, et al. Microwave-assisted acid hydrolysis of starch polymer in cassava pulp in the presence of activated carbon. Procedia Chem. 2012;4:238–244.
  • Grube M, Gapes JR, Schuster KC, et al. Application of quantitative IR spectral analysis of bacterial cells to acetone butanol ethanol fermentation monitoring. Analytica Chimica Acta. 2002;471:127–133.
  • Yadav S, Rawat G, Tripathi P, et al. Dual substrate strategy to enhance butanol production using high cell inoculum and its efficient recovery by pervaporation. Bioresour Technol. 2014; 152:377–383.
  • Schuster KC, Goodacre R, Gapes JR, et al. Degeneration of solventogenic Clostridium strains monitored by fourier transform infrared spectroscopy of bacterial cells. J Indust Microbiol Biotechnol. 2001; 27:314–321.
  • Buakhiaw B, Sanguanchaipaiwong V. Effect of media on acetone-butanol-ethanol fermentation by isolated Clostridium spp. Energy Procedia. 2017;138:864–869.
  • Al-Shorgani NKN, Kalil MS, Yusof WMW, et al. Fermentation of sago starch to biobutanol in a batch culture using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Ann Microbiol. 2012;62:1059–1070.
  • Li X, Li Z, Zheng J, et al. Yeast extract promotes phase shift of bio-butanol fermentation by Clostridium acetobutylicum ATCC824 using cassava as substrate. Bioresour Technol. 2012; 125:43–51.
  • Oladapo EO, Oaikhena EE, Abdulsalami MS. Exponential growth and solvents-production of Clostridium acetobutylicum ATCC 824 on TYA media containing sucrose and glucose as different sole carbon sources. Am J Biosci. 2017;5:64–69.
  • Elagdafi RA, Kalil MS. Production of butanol in batch culture by using Clostridium acetobutylicum NCIM 13357. Master of engineering Thesis, University of Malaysia, Malaysia. (2009).
  • Jiang Y, Guo D, Lu J, et al. Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5. Biotechnol Biofuels. 2018;11:89
  • Kao WC, Lin DS, Cheng CL, et al. Enhancing butanol production with Clostridium pasteurianum CH4 using sequential glucose-glycerol addition and simultaneous dual-substrate cultivation strategies. Bioresour Technol. 2013;135:324–330.
  • Cheng CL, Che PY, Chen BY, et al. Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Appl Energy. 2012;100:3–9.
  • Nakayama S, Kiyoshi K, Kadokura T, et al. Butanol Production from Crystalline Cellulose by Cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4. Appl Environ Microbiol. 2011;77:6470–6475.
  • Ranjan A, Mayank R, Moholkar VS. Process optimization for butanol production from developed rice straw hydrolysate using Clostridium acetobutylicum MTCC 481 strain. Biomass Conv Bioref. 2013;3:143–155.
  • Shi Z, Blaschek HP. Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis. Appl Environ Microbiol. 2008;74:7709–7714.
  • Noomtim P, Cheirsilp B. Production of butanol from palm empty fruit bunches hydrolyzate by Clostridium acetobutylicum. Energy Procedia. 2011;9:140–146.
  • Jonglertjunya W, Chinwatpaiboon P, Thambaramee H, et al. Butanol, ethanol and acetone production from sugarcane bagasses by acid hydrolysis and fermentation using Clostridium sp. AMR.. 2014;931:1602–1607.
  • Kudahettige-Nilsson RL, Helmerius J, Nilsson RT, et al. Biobutanol production by clostridium acetobutylicum using xylose recovered from birch kraft black liquor. Bioresour Technol. 2015;176:71–79.
  • Jiang C, Cao G, Wang Z, et al. Enhanced butanol production through adding organic acids and neutral red by newly isolated butanol-tolerant bacteria. Appl Biochem Biotechnol. 2016;180:1416–1427.
  • Du TF, He AY, Wu H, et al. Butanol production from acid hydrolyzed corn fiber with Clostridium beijerinckii mutant. Bioresour Technol. 2013;135:254–261.
  • Li T, Zhang C, Yang KL, et al. Unique genetic cassettes in a thermoanaerobacterium contribute to simultaneous conversion of cellulose and monosugars into butanol. Sci. Adv. 2018;4:1–12.
  • Bramono SE, Lam YS, Ong SL, et al. A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides. Bioresour Technol. 2011;102:9558–9563.
  • Yang X, Tu M, Xie R, et al. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum. AMB Express. 2013;3:3–8.
  • Huang C, Yang XY, Xiong L, et al. Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett Appl Microbiol. 2015;60:491–496.
  • Chen CT, Liao JC. Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol Lett. 2016;363.
  • Liu S, Bischoff KM, et al. Functional expression of the thiolase gene thl from Clostridium beijerinckii P260 in Lactococcus lactis and Lactobacillus buchneri. New Biotechnol. 2010;4:283–288.
  • Shen CR, Lan EI, Dekishima Y, et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol. 2011;77:2905–2915.
  • Buakhiaw B, Sanguanchaipaiwong V. Effect of media on acetone-butanol-ethanol fermentation by isolated Clostridium spp. Energy Procedia. 2017;138:864–869.
  • Inui M, Suda M, Kimura S, et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol. 2008; 77:1305–1316.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.