263
Views
8
CrossRef citations to date
0
Altmetric
Articles

A kinetic study and thermal decomposition characteristics of palm kernel shell using model-fitting and model-free methods

, , , &
Pages 105-116 | Received 17 May 2019, Accepted 07 Jul 2019, Published online: 24 Jul 2019

References

  • Yusoff S. Renewable energy from palm oil – innovation on effective utilization of waste. J Clean Prod. 2006;14:87..
  • Esfahani RM, Wan Ab Karim Ghani WA, Mohd Salleh MA, et al. Hydrogen-rich gas production from palm kernel shell by applying air gasification in fluidized bed reactor. Energy Fuels. 2012;26:1185–1191.
  • Patel M, Zhang X, Kumar A. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review. Renew Sust Energ Rev. 2016;53:1486.
  • Hussain M, Tufa LD, Yusup S, et al. A kinetic-based simulation model of palm kernel shell steam gasification in a circulating fluidized bed using Aspen Plus®: a case study. Biofuels 2018;9:635.
  • Ma Z, Chen D, Gu J, et al. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers Manag. 2015;89:251.
  • Hussain M, Tufa LD, Yusup S, et al. Aspen Plus® simulation studies of steam gasification in fluidized bed reactor for hydrogen production using palm kernel shell. Asian Simulation Conference, 2017.
  • Lazdovica K, Liepina L, Kampars V. Comparative wheat straw catalytic pyrolysis in the presence of zeolites, Pt/C, and Pd/C by using TGA-FTIR method. Fuel Process Technol. 2015;138:645.
  • Nilsson S, Gómez-Barea A, Fuentes-Cano D, et al. Gasification kinetics of char from olive tree pruning in fluidized bed.Fuel, 2014;125:192–199.
  • Paethanom A, Bartocci P, D’ Alessandro B, et al. A low-cost pyrogas cleaning system for power generation: scaling up from lab to pilot. Appl Energy. 2013;111:1080.
  • Chan YH, Quitain AT, Yusup S, et al. Liquefaction of palm kernel shell to bio-oil using sub- and supercritical water: an overall kinetic study. J Inst Energy. 2019;92:535.,
  • Soh M, Chew JJ, Liu S, et al. Comprehensive kinetic study on the pyrolysis and combustion behaviours of five oil palm biomass by thermogravimetric-mass spectrometry (TG-MS) analyses. Bioenerg Res. 2019;12:370.
  • Vamvuka D, Sfakiotakis S. Effects of heating rate and water leaching of perennial energy crops on pyrolysis characteristics and kinetics. Renew Energy. 2011;36:2433.
  • Qiu H-W, Zhou Q-C. J. J. C. p. Geng. Pyrolytic and kinetic characteristics of platycodon grandiflorum peel and its cellulose extract Carbohydr. Polym. 117: 644–649. 187, 140.
  • Gai C, Zhang Y, Chen W-T, et al. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Bioresource Technol. 2013;150:139.
  • Cai J, Wu W, Liu R, et al. A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chem. 2013;15:1331–1340.
  • Wang X, Hu M, Hu W, et al. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresource technology, 219, 2016;510–520.
  • Anca-Couce A, Berger A, Zobel NJF. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme.Fuel, 123, 2014;230-240.
  • Anca-Couce A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci. 2016;53:41.
  • Kim S-J, Jung S-H, Kim J-S. Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresource Technol. 2010;101:9797.
  • Luangkiattikhun P, Tangsathitkulchai C, Tangsathitkulchai M. Non-isothermal thermogravimetric analysis of oil-palm solid wastes. Bioresource Technol. 2008;99:986.
  • Damartzis T, Vamvuka D, Sfakiotakis S, et al. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresource Technol. 2011;102:6230.
  • Chutia RS, Kataki R, Bhaskar T. Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresource Technol. 2013;139:66.
  • Brown M, Maciejewski M, Vyazovkin S, et al. Computational aspects of kinetic analysis. Thermochim Acta. 2000;355:125.
  • Pérez-Maqueda LA, Sánchez-Jiménez PE, Perejón A, et al. Scission kinetic model for the prediction of polymer pyrolysis curves from chain structure. Polym Test. 2014;37:1–5.
  • Jiang G, Nowakowski DJ. Bridgwater. A systematic study of the kinetics of lignin pyrolysis. 2010;498:61–66.
  • Vyazovkin S, Burnham AK, Criado JM, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.
  • Piyarat W. 2009. Studies of biomass pyrolysis and gasification for fuel production (Doctoral dissertation, School of Chemical Engineering, Institute of Engineering Suranaree University of Technology).
  • Laidler KJ. The development of the Arrhenius equation. J Chem Educ. 1984;61:494.
  • Šimon P. Isoconversional methods. J Thermal Anal Calorimetry. 2004;76:123.
  • Vyazovkin S, Wight CA. Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem A. 1997;101:8279–8284.
  • Sbirrazzuoli N, Girault Y, Elégant L. Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 1. Application to single-peak methods: Freeman-Carroll, Ellerstein, Achar-Brindley-Sharp and multiple linear regression methods. Thermochim Acta. 1995;260:147.
  • Aboyade AO, Hugo TJ, Carrier M, et al. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere. Thermochim Acta. 2011;517:81.
  • Ozawa T. A new method of analyzing thermogravimetric data. BCSJ. 1965;38:1881.
  • Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part C: Polym Lett. 1966;4:323–328.
  • Doyle CD. Series approximations to the equation of thermogravimetric data. Nature 1965;207:290.
  • Akahira T, Sunose T. Joint Convention of Four Electrical Institutes. Sci Technol. 1971;16:22–31.
  • Starink M. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163.
  • Chao M, Li W, Wang X. Influence of antioxidant on the thermal–oxidative degradation behavior and oxidation stability of synthetic ester. Thermochim Acta. 2014;591:16.
  • Criado J, Ortega A. Non-isothermal transformation kinetics: remarks on the Kissinger method. J Non-Cryst Solids. 1986;87:302.
  • Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702.
  • Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.
  • Anca-Couce A, Berger A, Zobel N. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel 2014;123:230.
  • McKendry P. Energy production from biomass (Part 3): gasification technologies. Bioresource Technol. 2002; 83:55–63.
  • Misra MK, Ragland KW, Baker AJ. Wood ash composition as a function of furnace temperature. Biomass Bioenergy. 1993;4:103.
  • Wu K, Liu J, Wu Y, et al. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer. Bioresource Technol. 2014;163:18.
  • Hussain M, Tufa LD, Azlan R, et al. Steady State simulation studies of gasification system using palm Kernel shell. Proc Eng. 2016;148:1015–1021.
  • Khan Z, Yusup S, Ahmad MM. Integrated catalytic adsorption (ICA) steam gasification system for enhanced hydrogen production using palm kernel shell. international journal of hydrogen energy. 2014;87:3286–3293.
  • Rashid SRM, Saleh S, Samad NAFA. Proximate analysis and calorific value prediction using linear correlation model for torrefied palm oil wastes. MATEC Web Conf. 2017;131:04002.
  • Gao Y, Yang Y, Qin Z, et al. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell. SpringerPlus. 2016;5:333.
  • Asadieraghi M, Daud WMAW. Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: effects of demineralization by diverse acid solutions. Energy Convers Manage. 2014;82:71.
  • Caballero J, Conesa J, Font R, et al. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrol. 1997;42:159.
  • Asadullah M, Ab Rasid NS, Kadir SASA, et al. Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell. Biomass Bioenerg. 2013;59:316.
  • Chen D, Zheng Y, Zhu X. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages. Bioresource Technol. 2013;131:40.
  • Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–1532.
  • Wu W, Cai J, Liu R. Isoconversional kinetic analysis of distributed activation energy model processes for pyrolysis of solid fuels. Ind Eng Chem Res. 2013;52:14376.
  • Wang X, Hu M, Hu W, et al. Bioresource Technol. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics.2016;219:510–520.
  • Patnaik AS, Goldfarb JL. Continuous activation energy representation of the Arrhenius equation for the pyrolysis of cellulosic materials: feed corn stover and cocoa shell biomass. Cellulose Chem Technol. 2016;50:311–320.
  • Sánchez-Jiménez PE, del Rocío Rodríguez-Laguna M, Pérez-Maqueda LA, et al. Comments on “Pyrolysis kinetics of biomass from product information” (Applied Energy 110 (2013) 1–8) regarding the inability to obtain meaningful kinetic parameters from a single non-isothermal curve. Appl Energy. 2014;125:132.,
  • Ali I, Bahaitham H, Naebulharam R. A comprehensive kinetics study of coconut shell waste pyrolysis. Bioresour Technol. 2017;235:1.
  • Poletto M, Zattera AJ, Santana RM. Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresource Technol. 2012;126:7.
  • Tsamba AJ, Yang W, Blasiak W. Pyrolysis characteristics and global kinetics of coconut and cashew nut shells. Fuel Process Technol. 2006;87:523.
  • White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol. 2011;91:1.
  • Bartocci P, Anca-Couce A, Slopiecka K, et al. Pyrolysis of pellets made with biomass and glycerol: Kinetic analysis and evolved gas analysis. Biomass Bioenergy. 2017;97:11.,
  • Sharma RK, Wooten JB, Baliga VL, et al. Characterization of chars from pyrolysis of lignin. Fuel 2004;83:1469.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.