131
Views
19
CrossRef citations to date
0
Altmetric
Articles

Evaluation of thermal decomposition characteristics and kinetic parameters of melina wood

ORCID Icon, , , , & ORCID Icon
Pages 117-123 | Received 23 Mar 2019, Accepted 17 Jul 2019, Published online: 06 Aug 2019

References

  • Demirbas MF, Balat M. Recent advances on the production and utilization trends of bio-fuels: a global perspective. Energy Conver Manage. 2006;47:2371–2381.
  • Almeida G, Brito JO, Perré P. Technology alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator. Biores Technol. 2010;101:9778–9784.
  • Balogun AO, Lasode OA, McDonald AG. Devolatilisation kinetics and pyrolytic analyses of Tectona grandis (teak). Biores Technol. 2014;156:57–62.
  • Bu Q, Lei H, Qian M, et al. A thermal behavior and kinetics study of the catalytic pyrolysis of lignin. RSC Adv. 2016;6:100700–100707.
  • Liu NA, Fan W, Dobashi R, et al. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere. J Analy Appl Pyroly. 2002;63:303–325.
  • Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006;20:848–889.
  • El-Sayed SA, Mostafa ME. Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques. Waste Biomass Valor. 2015;6:401–415.
  • Okoroigwe E. Combustion analysis and devolatilazation kinetics of gmelina, mango, neem and tropical almond woods under oxidative condition. Int J Renew Energy Res. 2015;5:1024–1033.
  • Markova I, Ladomersky J, Hroncova E, et al. Thermal analyses of beech wood dust. bioResources. 2018;13:3098–3109.
  • Starink MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;288:97–104.
  • Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett. 1966;4:323–328.
  • da Silva JCG, Alves JLF, de Araujo Galdino WV, et al. Pyrolysis kinetic evaluation by single-step for waste wood from reforestation. Waste Manage. 2018;72:265–273.
  • White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Analy Appl Pyroly. 2011;91:1–33.
  • ASTM E871-82. Standard test method for moisture analysis of particulate wood fuels. West Conshohocken, PA: ASTM International; 2013.
  • BS EN 15148. Solid biofuels: determination of the content of volatile matter. London, UK: Britsh Standard Institution (BSI); 2009.
  • ASTM E1755-01. Standard test method for ash in biomass. ASTM fuels. West Conshohocken, PA: ASTM International; 2015.
  • ASTM D5373. Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke. West Conshohocken, PA: ASTM International; 2016.
  • ASTM D4239-11. Standard test method for sulphur in sample of coal and coke using high temperature tube furnace combustion. West Conshohocken, PA: ASTM International; 2011
  • ASTM D5865-04. Standard test method for gross calorific value of coal and coke. West Conshohocken, PA: ASTM International; 2004.
  • Collard FX, Blin J. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Review. 2014;38:594–608.
  • Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–292.
  • Naik SN, Goud VV, Rout PK, et al. Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev. 2010;14:578–597.
  • American Standard of Testing and Material (ASTME1641-07). Standard test method for decomposition kinetics by thermogravimetry. West Conshohocken, PA: ASTM International; 2007.
  • Jin W, Singh K, Zondlo J. Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversional method. Agricul. 2013;3:12–32.
  • Azeez A, Meier D, Odermatt J, et al. Fast pyrolysis of African and European lignocellulosic biomasses using Py-GC/MS and fluidized bed reactor. Energy Fuels. 2010;24:2078–2085.
  • Burhenne L, Messmer J, Aicher T, et al. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J Analy Appl Pyroly. 2013;101:177–184.
  • Lasode OA, Balogun OA, McDonald AG. Torrefaction of some Nigerian lignocellulosic resources and decomposition kinetics. J Analy Appl Pyroly. 2014;109:47–55.
  • Williams PT, Ahmad N. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis. Appl Energy. 2000;66:113–133.
  • Damartzis TH, Vamvuka D, Sfakiotakis S, et al. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Biores Technol. 2011;102:6230–6238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.