282
Views
6
CrossRef citations to date
0
Altmetric
Articles

Multiobjective optimization and nonlinear model predictive control of the continuous fermentation process involving Saccharomyces Cerevisiae

Pages 249-264 | Received 18 Jun 2019, Accepted 25 Sep 2019, Published online: 03 Oct 2019

References

  • Jones KD, Kompala DS. Cybernetic model of the growth dynamics of the Saccharomyces Cerevisiae in batch and continuous cultures. J Biotechnol. 1999;71(1–3):105.
  • Picataggio SK, Zhang M. Biocatalyst development for bio-ethanol production from hydrolysates. In: Wyman, CE, editor. Handbook on bioethanol, production and utilization. Washington, DC: Taylor & Francis; 1996.
  • Krishnan MS, Ho NWY, Tsao GT. Fermentation kinetics of ethanol production from glucose and xylose by recombinant saccharomyces”, 1400 (pLNH33). Appl Biochem Biotechnol. 1999;77–79:373–388.
  • Perego L, Cabral JM, Dias S, et al. Influence of temperature, dilution rate and sugar concentration on the establishment of steady-state in continuous ethanol fermentation of molasses. BIOMASS 1985;6(3):247–256.
  • Mulchandani A, Volesky B. Modelling of the acetone-butanol fermentation with cell retention. Can J Chem Eng. 1986;64(4):625.
  • Ferras E, Minier M, Goma G. Acetonobutylic fermentation: Improvement of performances by coupling continuous fermentation and ultrafiltration. Biotechnol Bioeng. 1986;28(4):523.
  • Parulekar SJ, Semones GB, Rolf MJ, et al. Introduction and elimination of Oscillations in continuous cultures of Saccharomyces Cerevisiae. Biotechnol Bioeng. 1986;28(5):700–710.
  • Strassle C, Sonnleitner B, Fiechter AA. A predictive model for the for the spontaneous synchronization of Saccharomyces cerevisiae grown in continuous culture, II. experimental verification. J. Biotechnology. 1989;9:191–208.
  • Von Meyenberg HK. Stable synchrony oscillations in continuous culture of Saccharomyces Cerevisiae under glucose limitation. In: Chance B, Pye EK, Shosh AK, and Hess B, editors. Biological and biochemical oscillators. New York: Academic Press; 1973. p. 411–417.
  • Beuse M, Bartling R, Kopmann A, et al. Effect of dilution rate on the mode of oscillation in continuous culture of Saccahromyces Cerevisiae. J Biotechnol. 1998;61(1):15–31.
  • Martegani E, Porro D, Ranzi BM, ALberghina L. Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast. Biotechnol Bioeng. 1990;36(5):453–459.
  • Zhang Y, Henson MA. Bifurcation analysis of continuous biochemical reactor models. Biotechnol Prog. 2001;17(4):647.
  • Simpson DJW, Kompala DS, Meiss JD. Discontinuity induced bifurcations in a model of Saccharomyces Cerevisiae. Math Biosci. 2009;218(1):40–49.
  • Zhu G, Zamamiri A, Henson MA, Hjortso MM. Model predictive control of continuous yeast bioreactors using cell population balance models. Chem Engg Sci. 2000;55(24):6155–6167.
  • Kurtz MJ, Henson MA, Hjortso MM. Nonlinear control of competitive mixed culture bioreactors via specific cell adhesion. Can J Chem Eng. 2000;78(1):237.
  • Parker RS, Doyle FJ. Optimal control of a continuous bioreactor using an empirical nonlinear model. Ind Eng Chem Res. 2001;40:1939–1951.
  • Zhang Y, Zamamiri A, Henson MA, Hjortso MM. Cell population models for bifurcation analysis and nonlinear control of continuous yeast bioreactors. J Proc Control. 2002;12(6):721–734.
  • Mhaskar P, Hjortso MM, Henson MA. Cell population modeling and parameter estimation for continuous cultures of Saccharomyces cerevisiae. Biotechnol Prog. 2002;18(5):1010–1026.
  • Gadkar KG, Doyle FC, Crowley TJ, Varner JD. Cybernetic model predictive control of a continuous bioreactor with cell recycle. Biotechnol Prog. 2003;19(5):1487.
  • Zhang Y, Henson MA, Kevrekidis YG. Nonlinear model reduction for dynamic analysis of cell population models. Chem Engg Sci. 2003;58(2):429–445.
  • Henson MA. Dynamic modeling and control of yeast cell populations in continuous biochemical reactors. Comput Chem Eng. 2003;27(8–9):1185.
  • Henson MA. Cell ensemble modeling of metabolic oscillations in continuous yeast cultures. Comput Chem Eng. 2005;29(3):645.
  • Bai F. Process oscillations in continuous ethanol fermentation with saccharomyces cerevisiae Fengwu Bai [PhD Thesis] Chemical engineering. Waterloo: University of Waterloo; 2007.
  • Abdelhamid A, Alhumaizi K. Dynamics of the Chemostat: A bifurcation Theory Approach, by Chapman and Hall/CRC 2011 Aug 9.
  • Sridhar LN. Elimination of oscillations in fermentation processes. AIChE J. 2011;57(9):2397–2405.
  • Sridhar LN. Global optimization of the Saccahromyces Cerevisiae Fermentation Process. Biotechnol Progr. 2013;29(4):917–923.
  • Sridhar LN, Saucedo ESL. Optimal control of Saccharomyces Cerevisiae fermentation process. Chem Eng Commun. 2016;203(3):318–325.
  • Ramkrishna D. 1982. A cybernetic perspective of microbial growth. In: Papoutsakis E, Stephanopoulos GN, Blanch HW, editors. Foundations of biochemical engineering: kinetics and thermodynamics in biological systems. Washington, DC: Americal Chemical Society.
  • Murthy GS, Johnston DB, Rausch KD, et al. A simultaneous saccharification and fermentation model for dynamic growth environments. Bioprocess Biosyst Eng. 2012;35(4):519.
  • Song H-S, Ramkrishna D, Pinchuk GE, et al. Dynamic modeling of aerobic growth of Shewanella oneidensis. Predicting triauxic growth, flux distributions, and energy requirement for growth. Metabolic Eng. 2013;25:25. Page
  • Ji M. e, Miao Y, Chen JY, et al. Growth characteristics of freeze-tolerant baker’s yeast Saccharomyces cerevisiae AFY in aerobic batch culture. Springer Plus 2016;5(1):1–13.
  • Patnaik PR. On the performances of noise filters in the restoration of oscillatory behavior in continuous yeast cultures. Biotechnol Lett. 2003;25(9):681.
  • Tourigny DS. Dynamic metabolic resource allocation based on the maximum entropy principle. arXiv preprint arXiv:1906.03919 2019.
  • Miettinen, Kaisa M. Nonlinear multiobjective optimization; Kluwers International Series, Netherlands, 1999.
  • Flores-Tlacuahuac A, Morales P, Riveral Toledo M. Multiobjective Nonlinear model predictive control of a class of chemical reactors. Ind Eng Chem Res. 2012;51(17):5891–5899.
  • Flores-Tlacuahuac A, Moreno ST, Biegler LT. Global optimization of highly nonlinear dynamic systems. Ind Eng Chem Res. 2008;47(8):2643–2655.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.